1. There is no graph given
2. ENERGY LEVELS!!!
Boiling is the process of liquid(middle energy, flat line) turning into a gas(lots of energy, flat line), hope this helps
A Bunsen burner, named after Robert Bunsen, is a common piece of laboratory equipment that produces a single open gas flame, which is used for heating, sterilization, and combustion. The gas can be natural gas (which is mainly methane) or a liquefied petroleum gas, such as propane, butane, or a mixture of both. Have A Great Day :)
The balanced chemical reaction is:
<span>N2 + 3H2 = 2NH3 </span>
We are given the amount of H2 being reacted. This will be our starting point.
26.3 g H2 (1 mol H2 / 2.02 g H2) 2 mol
O2/3 mol H2) ( 17.04 g NH3 / 1mol NH3) = 147.90 g O2
Percent yield = actual yield / theoretical
yield x 100
Percent yield = 79.0 g / 147.90 g x 100
Percent yield = 53.4%
The question is missing the molecules in which the integration ratio of 2:3 will be observed. The complete question is given in the attachment.
Answer:
Molecule (a), (c), and (f) will show two peaks with the integration ratio of 2:3 in their 1H NMR spectrum
Explanation:
In the 1H NMR spectrum, the peak area is dependent on the number of hydrogen in a specific chemical environment. Hence, the ratio of the integration of these signals provides us with the relative number of hydrogen in two peaks. This rationale is used for the assignment of molecules that will give 2:3 integration ratio in the given problem.
- Molecule (a) have two CH₂ and three CH₃ groups. Hence, it will give two peaks and their integration ratio becomes 2:3 (Answer)
- Molecule (b) contains three chemical environments for its hydrogen atoms
- Molecule (c) have a single CH₂ and CH₃ group giving integration ratio of 2:3 (Answer)
- Molecule (d) will give two peaks but their ratio will be 1:3 because of two hydrogens of CH₂ and six hydrogens from two CH₃ groups
- Molecule (e) have three CH and three CH₃ groups, so their ratio will become 1:3
- Molecule (f) contains four CH and two CH₃ groups, giving two peaks. So, the integration ratio of their peaks is 2:3 (Answer)
- Molecules
- (g)
- and
- (h)
- both have two CH and two CH₃ groups giving two peaks with the integration ratio of 1:3