The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
Answer:
0.18× 10²³ molecules
Explanation:
Given data:
Mass of copper hydroxide = 3.30 g
Number of molecules = ?
Solution:
Number of moles = mass/molar mass
Number of moles = 3.30 g/97.56 g/mol
Number of moles = 0.03 mol
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
0.03 mol × 6.022 × 10²³ molecules / 1mol
0.18× 10²³ molecules
Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.
