Answer:
Based on compounds given, NO reaction occurs
Explanation
The compounds should exchange ions to generate a driving force that pulls the reaction to completion. => Example ...
The Molecular Equation is ...
NH₄Cl(aq) + AgNO₃(aq) => NH₄NO₃(aq) + AgCl(s)
Silver chloride forms in this reaction as a solid precipitate because of its low solubility and is the 'Driving Force' of the reaction. Driving Force is a more stable compound than any on the reactant side and when formed leaves the reaction system as a solid ppt, liquid weak electrolyte (i.e., weak acid or weak base) or a gas decomposition product of a weak electrolyte.
The Ionic Equation is ...
NH₄⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) => NH₄⁺(aq) + NO₃⁻(aq) + AgCl(s)
This shows all ions from reaction plus the Driving Force of the reaction.
The Net Ionic Equation is ...
Ag⁺(aq) + Cl⁻(aq) => AgCl(s)
The Net Ionic Equation shows only those ions undergoing reaction. The NH₄⁺ and NO₃⁻ ions are 'Spectator Ions' and do not react.
Attached is a reference sheet for determining the Driving Force of a Metathesis Double Replacement Reaction. Suggest reviewing acid-base theories and the products of decomposition type reactions.
I think the answer would be Ionic sodium phosphate (Na3PO4) because it has the greatest boiling point elevation.
Answer:
The temperature of the gas.
Explanation:
According to the kinetic molecular theory, the molecules of a substance are in constant random motion.
If an ideal gas is contained is a sealed rigid container, the average velocity of the gas molecules is dependent of the temperature of the gas.
Recall that temperature is defined as the average kinetic energy of the molecules of a body.