The representation of this problem is shown in Figure 1. So our goal is to find the vector

. From the figure we know that:

From geometry, we know that:

Then using
vector decomposition into components:

Therefore:

So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector

, that is:
</span>

Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
Answer:
The momentum of an object is defined as the mass of the object times the velocity of the object, as P = m*v.
So the equipment needed would be:
Something to measure the mass of the object, like a balance.
Something to measure the speed of the object, like a doppler radar, or a simpler thing may be a cronometer, with that you can measure the amount of time that the object needs to travel a given distance, and with that you can obtain the speed of the object.
Now you can notice that speed is different than velocity, this is true, velocity is a vector, so this has a direction, then you need something to fix the direction in which the object moves, in this way you can determine the velocity.
Answer:
Answer is in the following attachment.
Explanation: