Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
12. The answer would be C. 1.50 s. This is because if you divide 60 by 40, you will get 1.5.
13. For this one I'm not sure, but what I can tell you is that the heavier something is the faster it will sink, the lighter it is, it will float.
The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
Answer:
Work done against gravity in lifting an object becomes potential energy of the object-Earth system. The change in gravitational potential energy, ΔPEg, is ΔPEg = mgh, with h being the increase in height and g the acceleration due to gravity.
Explanation:
You're Welcome.