I believe the answer is 40,000 Hz to 100,000 Hz
Answer:
18 m
Explanation:
G = Gravitational constant
m = Mass of planet = 
= Density of planet
V = Volume of planet assuming it is a sphere = 
r = Radius of planet
Acceleration due to gravity on a planet is given by

So,

Density of other planet = 
Radius of other planet = 

Since the person is jumping up the acceleration due to gravity will be negative.
From kinematic equations we have

On the other planet

The man can jump a height of 18 m on the other planet.
The initial velocity of the ball is 0. Applying:
v = u + at
v = 0 + 229 x 0.08
v = 18.3 m/s
a)
Vx = Vcos(∅)
Vx = 18.3cos(52.3)
Vx = 11.2 m/s
b)
Vy = Vsin(∅)
Vy = 18.3sin(52.3)
Vy = 14.5 m/s
Answer:
0.0002 C.
Explanation:
Charge: This can be defined as the ratio of current to time flowing in a circuit. The S.I unit of charge is Coulombs (C)
Mathematically, charge can be expressed as
Q = CV ................................. Equation 1
Where Q = amount of charge, C = capacitance of the capacitor, V = potential difference across the plates.
Given: C = 2.0-μF = 2×10⁻⁶ F, V = 100 V.
Substitute into equation 1
Q = 2×10⁻⁶× 100
Q = 2×10⁻⁴ C
Q = 0.0002 C.
The amount of charge accumulated = 0.0002 C