Perhaps one of the most useful yet taken-for-granted accomplishments of the recent centuries is the development of electric circuits. The flow of charge through wires allows us to cook our food, light our homes, air-condition our work and living space, entertain us with movies and music and even allows us to drive to work or school safely. In this unit of The Physics Classroom, we will explore the reasons for why charge flows through wires of electric circuits and the variables that affect the rate at which it flows. The means by which moving charge delivers electrical energy to appliances in order to operate them will be discussed in detail.
One of the fundamental principles that must be understood in order to grasp electric circuits pertains to the concept of how an electric field can influence charge within a circuit as it moves from one location to another. The concept of electric field was first introduced in the unit on Static Electricity. In that unit, electric force was described as a non-contact force. A charged balloon can have an attractive effect upon an oppositely charged balloon even when they are not in contact. The electric force acts over the distance separating the two objects. Electric force is an action-at-a-distance force.
Action-at-a-distance forces are sometimes referred to as field forces. The concept of a field force is utilized by scientists to explain this rather unusual force phenomenon that occurs in the absence of physical contact. The space surrounding a charged object is affected by the presence of the charge; an electric field is established in that space. A charged object creates an electric field - an alteration of the space or field in the region that surrounds it. Other charges in that field would feel the unusual alteration of the space. Whether a charged object enters that space or not, the electric field exists. Space is altered by the presence of a charged object; other objects in that space experience the strange and mysterious qualities of the space. As another charged object enters the space and moves deeper and deeper into the
Answer:
a)Current will flow perpendicularly.
b)Magnitude of flux will be 2.987 N m2 C−1
Explanation:
The unit of work done is in Joules
Work done is a physical quantity that is defined as the force applied to move a body through a particular distance.
Work is only done when the force applied moves a body through a distance.
Work done = Force x distance
The maximum work is done when the force is parallel to the distance direction.
The minimum work is done when the force is at an angle of 90° to the distance direction.
So to solve this problem;
multiply the force applied by Zack and distance through which the bull was pulled.
Answer:
El microscopio y el descubrimiento de microorganismos. Antonie van Leeuwenhoek (1632-1723) fue una de las primeras personas en observar microorganismos, utilizando un microscopio de su propio diseño, e hizo una de las contribuciones más importantes a la biología. Robert Hooke fue el primero en usar un microscopio para observar seres vivos.
Answer:
heat came from the supernova that led to the formation of solar system