Answer: Solution W and Y solution have more solubility than X and Z
Solutions are homogeneous mixtures of two or more components. By uniform mix we mean that its structure and properties are the same in the whole mix. Generally, the component which is present in the largest quantity is known as solvent. Solvent determines the physical condition in which the solution exists. In addition to the solvent, one or more component present in the solution is called solutes. In this unit we will only consider binary solutions (i.e., with two components)
The structure of the solution can be described by expressing its concentration. The latter can either be expressed qualitatively or quantitatively. For example, in qualitatively we can say that the solution is diluted (i.e., relatively small amounts of solubility) or it is concentrated (i.e., relatively rarely sighs). But in real life such details may be very confusing and thus require a quantitative description of the solution. There are several ways that we can quantitatively describe the concentration of solutions. (i) Mass Percentage (W / W): The mass percentage of a component of the solution is defined as: mass of the component = mass of the component in the solution = 100 Total mass of the solution .For example, if by mass A solution is described by 10% glucose in water, it means that 10 grams of glucose dissolved in 90 grams of water, resulting in 100 grams of solution. The concentration described by a large percentage of the population is usually used in industrial chemical applications. For example, the commercial bleaching solution contains 3.62 mass percentages of sodium hypochlorite in water. (ii) Volume Percentage (V / V): Volume Percentage is defined as: Total Volume of Component Volume 100 (component) Volume% of Component
Explanation:
Nuclear fusion in the core tries to blow the star apart. Gravity holds it together. Whoever designed that system really knew what he was doing. I'm kinda grateful to him.
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
Answer:
After refraction at two parallel faces of a glass slab, a ray of light emerges in a direction parallel to the direction of incidence of white light on the slab. As rays of all colours emerge in the same direction (of incidence of white light), hence there is no dispersion, but only lateral displacement.