Explanation:
∑τ = Iα
(6 N) (0.80 m) = I (0.5 rad/s²)
I = 9.6 kg m²
700 J is the work done by the system.
<u>Explanation:</u>
The first law of thermodynamics is that the change in internal energy of the system is equal to the net heat transfer to the system minus the complete work performed by the system.

Where,
∆U – Change in internal energy
Q – Heat transfer to the system
Q – Work done
Here,
<u>Given data:</u>
∆U - 400 J
Q - 1100 J
We need to the work done by the system (W)
By applying the given values in the above equation, we get
400 = 1100 - W
W = 1100 - 400 = 700 J
Answer:
0.739
Explanation:
If we treat the four tire as single body then
W ( weight of the tyre ) = mass × acceleration due to gravity (g)
the body has a tangential acceleration = dv/dt = 5.22 m/s², also the body has centripetal acceleration to the center = v² / r
where v is speed 25.6 m/s and r is the radius of the circle
centripetal acceleration = (25.6 m/s)² / 130 = 5.041 m/s²
net acceleration of the body = √ (tangential acceleration² + centripetal acceleration²) = √ (5.22² + 5.041²) = 7.2567 m/s²
coefficient of static friction between the tires and the road = frictional force / force of normal
frictional force = m × net acceleration / m×g
where force of normal = weight of the body in opposite direction
coefficient of static friction = (7.2567 × m) / (9.81 × m)
coefficient of static friction = 0.739