We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.
<h3>What is
mechanical equilibrium?</h3>
There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.
To learn more about mechanical equilibrium, visit:
<u>brainly.com/question/14246949</u>
#SPJ4
Answer:
write the name of any five districts of nepal
Answer:
a) Batteries and fuel cells are examples of galvanic cell
b) Ag-cathode and Zn-anode
c) Cell notation: Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)
Explanation:
a) A galvanic cell is an electrochemical cell in which chemical energy is converted to electrical energy. The chemical reaction which drives a galvanic cell is a redox reaction i.e. a reduction-oxidation process.
A typical galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs. Batteries and fuel cells are examples of galvanic cells.
b) The nature of the electrode that will serve as an anode or cathode depends on the value of the standard reduction potential (E⁰) of that electrode. The electrode with a higher or more positive the value of E⁰ serves as the cathode and the other will function as an anode.
In the given case, the E⁰ values from the standard reduction potential table are:
E⁰(Zn/Zn2+) = -0.763 V
E°(Ag/Ag+)=+0.799 V
Therefore, Ag will be the cathode and Zn will be the anode
c) In the standard cell notation, the anode half cell is written on the left followed by the salt bridge '||' and finally the cathode half cell to the right.
Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)