Answer:
he maximum frequency occurs when the denominator is minimum
f’= f₀ 
Explanation:
This is a doppler effect exercise, where the sound source is moving
f = fo
when the source moves towards the observer
f ’=f_o
Alexandrian source of the observer
the maximum frequency occurs when the denominator is minimum, for both it is the point of maximum approach of the two objects
f’= f₀ 
Objects repel and attract because of a thing called electrostatic attraction. When objects have the same charge (positive or negative), then they will repel, and if they have opposite charges then they will attract
Here it is given that initial speed of the package will be same as speed of the helicopter

displacement of the package as it is dropped on ground

acceleration is due to gravity

now by kinematics



by solving above equation we have

so it will take 5.2 s to reach the ground
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>