The reaction between calcium carbonate and hydrochloric acid can be expressed through the chemical reaction,
CaCO3 + 2HCl --> CaCl2 + H2O + CO2
The molecular weight of calcium carbonate is 100 g/mol while that of hydrochloric acid is 36.45. The equation above depicts that 100 g of calcium carbonate can be dissolved in 72.9 g of hydrochloric acid.
x = (4 g HCl)(100 g CaCO3 / 72.9 HCl)
x = 5.49 g
Answer: 5.49 g
Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94
Answer:
carbon dioxide is acidic and when it comes in contact with blue litmus paper it turns red
Explanation:
F. <em>None of the above
</em>
<em>No O atoms are present</em> as reacting substances, only O_2 and H_2O molecules.
O_2 + 2H_2O + 2e^(-) → 4OH^(-)
We must use <em>oxidation numbers</em> to decide whether oxygen or water is the substance reduced.
The oxidation number of O changes from 0 in O_2 to -2 in OH^(-).
A decrease in oxidation number is <em>reduction</em>, so O_2 is the substance reduced.
The oxidation number of O is -2 in both H_2O and OH^(-), so water is <em>neither oxidized nor reduced</em>.
In nature there are many more variations amino acids than the simple 20 found in humans. However, when analyzing the human genome sequence, there is a code for all 64 permutations (4^3), only some of them share amino acids. This is a safe-guard against mutations of one or two nucleotides. For example, the amino acid Alanine is coded with four different nucleotide sequences: GCA, GCC, GCG, GCU. Also some amino acids code the same like UUU &UUC