Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
The gravitational pull generates this cool thing called tidal force, which kinda pushes the water to the side closest to the moon. When the tide is high, that means the moons closer to that point than somewhere else.
Two sides will always have high tide and two sides will always have low tide.
Answer is: pH of barium hydroxide is 13.935.
Chemical dissociation of barium hydroxide in water:
Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻(aq).
c(Ba(OH)₂) = 0.43 M.
V(Ba(OH)₂) = 100 mL ÷ 1000 mL/L = 0.1 L.
n(Ba(OH)₂) = 0.43 mol/L · 0.1 L.
n(Ba(OH)₂) = 0.043 mol.
From chemical reaction: n(Ba(OH)₂) : n(OH⁻) = 1 : 2.
n(OH⁻) = 0.086 mol.
c(OH⁻) = 0.86 mol/L.
pOH = -logc(OH⁻).
pOH = 0.065.
pH = 14 - 0.065 = 13.935.
Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation:
Explanation:
The oceans and other water bodies absorb huge amounts of solar energy and radiation. Thermohaline circulation transports the absorbed heat from the equator to the poles to regulate and moderate Earth's climate.