Answer:
The answer to your question is V2 = 434.7 l
Explanation:
Data
Volume 1 = V1 = 240 l Volume 2 = ?
Temperature 1 = T1 = 479°K Temperature 2 = T2 = 293°K
Pressure 1 = P1 = 300 KPa Pressure 2 = P2 = 101.325 Kpa
Process
1.- Use the combined gas law to solve this problem
P1V1/T1 = P2V2/t2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (300)(240)(293) / (479)(101.325)
3.- Simplification
V2 = 21096000 / 48534.675
4.- Result
V2 = 434.7 l
Answer:
60.08g/mol
Explanation:
Given parameters:
Formula of sand = SiO₂
Find the molar mass of the compound to the hundredths place;
Molar mass of Si = 28.085g/mol
Molar mass of O = 15.999
Molar mass = 28.085 + 2(15.999) = 60.08g/mol
The name is sodium chloride. This is an ionic compound so you use the ionic naming system which is the name of the cation followed by the name of the anion. I hope this helps. Let me know if anything is unclear.
Answer:
I think the answer is stored energy
Explanation:
Answer:
F⁻(aq) + H⁺(aq) ⇄ HF(aq)
Explanation:
When aqueous solutions of potassium fluoride and hydrochloric acid are mixed, an aqueous solution of potassium chloride and hydrofluoric acid results. The corresponding molecular equation is:
KF(aq) + HCl(aq) ⇄ KCl(aq) + HF(aq)
The full ionic equation includes all the ions and the molecular species. HF is a weak acid so it exists mainly in the molecular form.
K⁺(aq) + F⁻(aq) + H⁺(aq) + Cl⁻(aq) ⇄ K⁺(aq) + Cl⁻(aq) + HF(aq)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and the molecular species.
F⁻(aq) + H⁺(aq) ⇄ HF(aq)