Answer:
A) 
B) 
C) 
Explanation:
Given:
- mass of flywheel,

- diameter of flywheel,

- rotational speed of flywheel,

- duration for which the power is off,

- no. of revolutions made during the power is off,

<u>Using equation of motion:</u>



Negative sign denotes deceleration.
A)
Now using the equation:


is the angular velocity of the flywheel when the power comes back.
B)
Here:

Now using the equation:


is the time after which the flywheel stops.
C)
Using the equation of motion:


revolutions are made before stopping.
D is the correct answer!!
Well formation of metallic bond depends on free electrons.smaal sized atoms hold their electrons more firmly as compared to large size atoms ,this z due to distance of outer shell electrons by nucleus..in this way no of free electrons affect strength of metallic bond..smaal sized atoms release less free electrons..
1. Find the force of friction between the sports car and the station wagon stuck together and the road. The total mass m = 1928kg + 1041kg = 2969kg. The only force in the x-direction is friction: F = μ*N = μ * m * g
2. Find the acceleration due to friction:
F = m*a = μ * m * g => a = μ * g = 0.6 * 9.81
3. Find the time it took the two cars stuck together to slide 12m:
x = 0.5*a*t²
t = sqrt(2*x / a) = sqrt(2 * x / (μ * g) )
4. Find the initial velocity of the two cars:
v = a*t = μ * g * sqrt(2 * x / (μ * g) ) = sqrt( 2 * x * μ * g)
5. Use the initial velocity of the two cars combined to find the velocity of the sports car. Momentum must be conserved:
m₁ mass of sports car
v₁ velocity of sports car before the crash
m₂ mass of station wagon
v₂ velocity of station wagon before the crash = 0
v velocity after the crash
m₁*v₁ + m₂*v₂ = (m₁+m₂) * v = m₁*v₁
v₁ = (m₁+m₂) * v / m₁ = (m₁+m₂) * sqrt( 2 * x * μ * g) / m₁
v₁ = 33.9 m/s
The gravitational force.
In fact, the motion of the projectile is composed by two independent motions:
- on the horizontal direction, it is a uniform motion (with constant speed)
- on the vertical direction, it is a uniformly accelerated motion, where the vertical acceleration g is given by the gravity exerted by the Earth on the projectile.
For this reason, the composition of the two motions results in a parabolic trajectory.