Answer:
180,000
Explanation:
Frequency is a quantity that is measured in Hertz [Hz] and it represents the number of rotations per second.
A motor with a frequency of 50 Hz will rotate 50 times per second.
Since we don't want to know how many times it rotates per second, but per hour. The first step is to find how many seconds there are in an hour and then multiply that amount by 50.
Seconds in an hour:
there are 60 seconds per minute, and 60 minutes per hour, thus there are
60*60 = <u>3,600 seconds in an hour</u>
We know that the motor will rotate 50 times per second so to find the number of rotations in 1 hour = 3,600 seconds we multiply:
50*3,600 = 180,000 rotations
The time the truck must apply the given force to increase its speed to given value is 5 s.
The given parameters;
- <em>applied force, F = 600 N</em>
- <em>mass of the truck, m = 1,500 kg</em>
- <em>speed of the truck, v = 2 m/s</em>
The force applied to the truck is determined by Newton's second law of motion; <em>which states that the force applied to an object is directly proportional to the product of mass and acceleration of the object.</em>
F = ma

Thus, the time the truck must apply the given force to increase its speed to given value is 5 s.
Learn more here:brainly.com/question/1988795
Answer:
a) 378Ns
b) 477.27N
Explanation:
Impulse is the defined as the product of the applied force and time taken. This is expressed according to the formula
I = Ft = m(v-u)
m is the mass = 70kg
v is the final velocity = 5.4m/s
u is the initial velocity = 0m/s
Get the impulse
I = m(v-u)
I = 70(5.4-0)
I = 70(5.4)
I = 378Ns
b) Average total force is expressed as
F = ma (Newton's second law)
F = m(v-u)/t
F = 378/0.792
F = 477.27N
Hence the average total force experienced by a 70.0-kg passenger in the car during the time the car accelerates is 477.27N
Wow ! I understand your shock. I shook and vibrated a little
when I looked at this one too.
The reason for our shock is all the extra junk in the question,
put there just to shock and distract us.
"Neutron star", "5.5 solar masses", "condensed burned-out star".
That's all very picturesque, and it excites cosmic fantasies in
out brains when we read it, but it's just malicious decoration.
It only gets in the way, and doesn't help a bit.
The real question is:
What is the acceleration of gravity 2000 m from
the center of a mass of 1.1 x 10³¹ kg ?
Acceleration of gravity is
G · M / R²
= (6.67 x 10⁻¹¹ N·m²/kg²) · (1.1 x 10³¹ kg) / (2000 m)²
= (6.67 x 10⁻¹¹ · 1.1 x 10³¹ / 4 x 10⁶) (N) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ (kg · m / s²) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ m / s²
That's about 1.87 x 10¹³ times the acceleration of gravity on
Earth's surface.
In other words, if I were standing on the surface of that neutron star,
I would weigh 1.82 x 10¹² tons, give or take.
The answer is b no problem