1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-14-01-66 [18.8K]
3 years ago
5

A ringing bell sends sound waves in all directions places sides

Physics
1 answer:
Strike441 [17]3 years ago
4 0

Answer:

direction

Explanation:

because particles surround the bell, so when the bell vibrates, it causes particles surrounding it to vibrate back and forth vigorously. as these particles vibrate they collide with the neighbouring particles, passing on the energy.

hope this is what you are asking, if not please report it so that someone else gets to try it.

You might be interested in
Assuming a vertical trajectory with no drag, derive the applicable form of the rocket equation for this application
VARVARA [1.3K]

Answer:

The vertical trajectory is governed by Ordinary Differential Equation.

Time derivatives of each state variables.

d(d)/dt = v, d(m)/dt = -d(m-fuel)/dt, d(v)/dt = F/m.

Where V is velocity positive upwards, t is time, m is mass, m-fuel is fuel mass, F is Total force, positive upwards.

Therefore,

F = -mg - D + T, If V is positive and

F = -mg + D - T, If T is negative.

D is drag and the questions gave it as zero.

Explanation:

The two sign cases in derivative equations above are required because F is defined positive up, so the drag D and thrust T can subtract or add to F depending in the sign of V . In contrast, the gravity force contribution mg is always negative. In general, F will be some function of time, and may also depend on the characteristics of the particular rocket. For example, the T component of F will become zero after all the fuel is expended, after which point the rocket will be ballistic, with only the gravity force and the aerodynamic drag force being p

8 0
3 years ago
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
3 years ago
A planet has a circular orbit around a star. It is a distance of 53,000,000 km from the centre of the star.
Kipish [7]

Answer:

it takes 365 days to revolve around the star(sun)

5 0
3 years ago
A nonconducting spherical shell, with an inner radius of 4 cm and an outer radius of 6 cm, has charge spread non uniformly throu
Aloiza [94]
In other words a infinitesimal segment dV caries the charge 
<span>dQ = ρ dV </span>

<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>

<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>

<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
6 0
3 years ago
The components of vector A are Ax = +2.2 and Ay = -6.9 , and the components of vector B are given are Bx = -6.1 and By = -2.2. W
Zina [86]
For simplicity, let's call vector B-A  vector C  Then C is
Cx = (-6.1 - 2.2)  
Cy = (-2.2 - (-6.9))  Or,
Cx = -8.3  Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
3 0
2 years ago
Other questions:
  • Calculate the kinetic energy of a 10kg cart traveling at 4 m/s?
    8·2 answers
  • Which of the following statements best states Newton's second law?
    12·1 answer
  • A proton is a subatomic particle that carries a ___________ charge
    10·1 answer
  • Which image represents two equal displacements?
    14·1 answer
  • What is the difference is a hypothesis and a theory
    12·1 answer
  • I NEED HELP ASAP! PLSSSSSSSSSSSSSSSSSSS
    12·1 answer
  • 3) A lead bullet initially at 30 C just melts upon striking a target. Assuming that all of the initial kinetic energy of the bul
    8·1 answer
  • A 45kg sled is being pulled from camp by 5 dogs each capable of exerting 25N force on the sled. If the sled starts from rest and
    14·2 answers
  • What evidence do we have that the moon is receding from Earth?
    14·1 answer
  • A circuit has a voltage drop of 27 Vacross a 30 2 resistor that carries a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!