Answer:
B. Is its acceleration constant
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. ... An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction.
Answer: A student walks 50 meters east, 40 meters north, 35 meters east, and then 20 m south. Then the magnitude and direction of the student's total displacement will be 87.32 m along the direction of AD or in east-south direction.
Explanation: To find the correct answer, we need to know about the Displacement of a body in motion.
<h3>What is displacement of a body in motion?</h3>
- The displacement is the shortest distance between initial and final positions of a body.
- It's a vector quantity, and can positive, negative, or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
<h3>How to solve the problem?</h3>
- At first, we can draw a diagram showing the motion of the body.
- From the diagram, the displacement of the body will be equal to the distance between point A and D.
- To solve this, we can use Pythagoras theorem.

Thus, from the above calculations, we can conclude that, the displacement of the body will be equal to 87.32 m along the direction of AD or in east-south direction.
Learn more about the Displacement here:
brainly.com/question/28020108
#SPJ4
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²