Explanation :
Work is done when a force is applied to create a displacement on an object.
Thus, the work done depends on the two factors i.e.
(1) Applied force (F)
(2) Distance or displacement (d)
Mathematically, work done is 
It also depends on the angle between the force and the displacement.

For example,
A person carries a weight of 20 kg and lifts it on his head 1.5 m above the surface. So, the work done by him on the luggage will be:

or


So, 
Hence, the work done by him on the luggage is 294 Joules.
The Milky Way is a spiral galaxy type so it has arms sort of like an octopus. We live in the Milky Way
Answer: So, I looked at it to see what was the correct one, and the correct answer is Cool air near surface forms high-pressure areas, warm air forms low pressure areas. I hope this helps :D :)
Explanation:
Answer:
hi here is your answer and this is a very important question.
Explanation:
A lever is a rigid bar with three parts: the fixed point around which the bar pivots is the fulcrum: the effort arm (in-lever arm) is the part of the lever to which force is applied; the resistance arm (out-lever arm) is the part that bears the load to be moved.
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>