Answer: condensation process is exothermic. The correct option is IV.
Explanation: Exothermic reaction is a chemical reaction in which heat is released to the surrounding environment.
condensation is defined as a process by which a medium changes from gaseous phase into liquid phase. Using water molecules to illustrate, to transform water molecules to gaseous phase it requires the heat of vaporization to be overcomed. This same hear of vaporization needs to be given off when changing back to liquid phase.
Answer:
The buoy will move upwards and downwards and well as left and right
Explanation:
As the wind is storing so had the capability to move the buoy in all directions as it is a light object despite being anchored down
PLEASE GIVE BRAINLIEST AND THANKS :-)
Answer:
Explanation:
Total tension must support the weight of the child and provide the necessary centripetal force.
2T = m(g + v²/R)
2(414) = 35.0(9.81 + v²/3.02)
828 = 35.0(9.81 + v²/3.02)
23.65 = 9.81 + v²/3.02
13.847 = v²/3.02
41.81 = v²
v = 6.47 m/s
F = 2(414) = 828 N (ignoring the weight of the chains and seat)
Answer:
c. Kinetic energy
Explanation:
The two types of energy involved in this problem are:
- Potential energy: it is the energy possessed by an object due to its position. It is calculated as

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object relative to the ground
From the formula, we see that the higher the object is above the ground (higher h), the larger the potential energy of the object. In this problem, the pig is falling down, so the value of h is decreasing, therefore the potential energy is decreasing as well.
- Kinetic energy: it is the energy possessed by an object due to its motion. It is given by:

where
m is the mass of the object
v is its speed
In this problem, as the pig falls down, it accelerates, so its speed increases: since the kinetic energy is proportional to the square of the speed, as the speed increases, its kinetic energy increases too. So, the correct answer is
c. Kinetic energy
Answer:
c 275 m
Explanation:
Given parameters:
Final velocity = 73.5m/s
Unknown:
Height of fall = ?
Solution:
Since the body is falling from rest, U = 0 or initial velocity is 0m/s. Then we use one of the kinematics equation to solve this problem.
V² = U² + 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
73.5² = 0² + (2 x 9.8 x h)
5402.25 = 19.6h
h = 275.6m