1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frutty [35]
4 years ago
15

A cord of negligible mass runs around two massless, frictionless pulleys. A canister with mass m = 20 kg hangs from one pulley.

A constant force F is exerted on the free end of the cord. (a) What magnitude of F is required to lift the canister at constant speed? (b) To lift the canister by 2.0 cm, how far must you pull the free end of the cord? (c) What is the work done on the canister by the tension in the cords attached to the canister? How does this compare to the work you do in pulling down on the cord? (d) What is the work done by the weight of the canister? (e) What is the net work done on the canister? (f) Explain why the pulley system offers a mechanical advantage. Does it offer an advantage from the viewpoint of energy?
Physics
1 answer:
photoshop1234 [79]4 years ago
6 0

(a) 196 N

The equation of the forces on the side of the cord where the force F is applied is:

F-T=0 (1)

where T is the tension in the cord.

On the other side of the cord, the equation of the forces on the canister is

T-mg = ma (2)

where

m = 20 kg is the mass of the canister

g=9.8 m/s^2 is the acceleration of gravity

a is the acceleration

From (1),

T=F

Substituting into (2),

F-mg = ma\\F=m(g+a)

We want the canister to move at constant speed, so

a = 0

And therefore:

F=mg=(20)(9.8)=196 N

b) 2.0 cm

The cord is inextensible, this means that the acceleration of its parts are the same. Therefore, the acceleration of the free end must be the same as the acceleration of the canister: and this means that the two parts also cover the same distance in the same time.

Therefore, the free end of the cord must be moved exactly the same as the canister, by 2.0 cm.

c) 3.92 J, the same

The work done by the tension in the cord is

W_T = T d

where

T is the tension

d = 2.0 cm = 0.02 m is the displacement

As we said in part (a), the tension in the cord is equal to the force applied to the free end:

T = F

So

T = 196 N

Therefore, the work done by the tension is

W=(196)(0.02)=3.92 J

And since the force applied (F) is the same, then the work done by you when pulling the cord is exactly the same.

(d) -3.92 J

The weight of the canister is

F_g = mg =(20 kg)(9.8 m/s^2)=196 N

However, the direction of the force of gravity is opposite to the displacement. Therefore, the work done by gravity is negative:

W_g = - F_g d

And substituting,

W_g=-(196)(0.02)=-3.92 J

(e) Zero

The net work done on the canister can be simply calculated by adding the work done by the tension in the cord and the weight of the canister:

W=W_T+W_g = 3.92 + (-3.92 ) = 0

This is in agreement with the work-energy theorem, which states that the work done on an object is equal to its change in kinetic energy. In this situation, the canister is moving at constant speed, so its kinetic energy is not change: therefore,

\Delta K = 0 (change in kinetic energy = 0)

and so, the work done on it is also zero.

(f) The pulley system changes the direction of the force applied

This is a simple pulley system, which means  that the system does not multiply the force applied in input. In fact, the mechanical advantage of the system is

MA=\frac{F_{out}}{F_{in}}

where:

F_{out} is the output force, which is the weight of the canister

F_{in} is the force in input, which is F

So, the mechanical advantage is 1:

MA=\frac{196 N}{196 N}=1

From a point of view of energy, therefore, there is no advantage in this system.

However, the advantage offered by the pulley system concerns the direction of the force: in fact, it changes the direction of the applied force (which is F, downward) into the tension of the cord (which is upward on the canister).

You might be interested in
Which of the following is a resistor?<br> fan<br> switch<br> battery<br><br><br> Thank you!
Rama09 [41]
The answer is battery:)
6 0
3 years ago
Read 2 more answers
As an ice cube melts, its molecules
fomenos

Answer:

A. absorb heat energy and move farther apart

Explanation:

The answer is A since when a ice cube takes in heat, it changes form and melts down to a liquid : water.

The molecules in water are farther apart since they are moving around alot but can be contained in a container.

3 0
4 years ago
A 60cm long string of an ordinary guitar is tuned to produce the note a4 (frequency 440hz) when vibrating in its fundamental mod
pishuonlain [190]

Answer:

0.78 m

Explanation:

The relationship between wavelength and frequency of a wave is given by

v=f \lambda

where

v is the speed of the wave

f is the frequency

\lambda is the wavelength

For the sound wave in this problem, we have

f=440 Hz is the frequency

v = 344 m/s is the speed of sound in air

Substituting into the equation and re-arranging it, we find the wavelength:

\lambda=\frac{v}{f}=\frac{344 m/s}{440 Hz}=0.78 m

8 0
3 years ago
Read 2 more answers
A sample of a gas in a rigid container has an initial pressure of 5 atm at a temperature of 254.5 k. The temperature is decrease
skelet666 [1.2K]

The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

\frac{P_1}{T_1} = \frac{P_2}{T_2}

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

P_2 = T_2 \frac{P_1}{T_1}=(101.8 K) \frac{5 atm}{254.5 K}=2 atm

So, the new pressure is 2 atm.

7 0
3 years ago
How is energy transformed to chemical energy?
morpeh [17]

it is transfred through the basics

6 0
3 years ago
Other questions:
  • A 0.675 kg mass is attached to a
    9·1 answer
  • Antiballistic missiles (ABMs) are designed to have very large accelerations so that they may intercept fast-moving incoming miss
    14·1 answer
  • Communication with submerged submarines via radio waves is difficult because seawater is conductive and absorbs electromagnetic
    8·1 answer
  • How did Rutherford's experiments demonstrate that Thomson's model of the atom was incorrect?
    10·2 answers
  • (a) At a distance of 0.200 cm from the center of a charged conducting sphere with radius 0.100 cm, the electric field is 480 N&g
    9·1 answer
  • What is the Asch experiment
    12·1 answer
  • I've been stuck on this question for two weeks, please help... :,)
    14·2 answers
  • What is the density of an object with a mass of 50 grams and a volume of 4 cm3
    7·2 answers
  • Please guys i need help in this
    13·1 answer
  • a wave's amplitude is 0.5 meters. if its amplitude is increased to 1 meter, how much does its energy change?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!