Magnesium oxide is an ionic compound with a very high melting point and which requires a large amount of energy for melting.
<h3>What are ionic compounds?</h3>
Ionic compounds are compounds which are formed between oppositely charged ions which are held together by electrostatic forces of attraction between the oppositely charged ions.
Ionic compounds are formed when metal atoms donate electrons to non-metals atoms to form ions.
Magnesium oxide is an ionic compound.
The nature of bonding is ionic bonding.
It has a crystalline lattice structure.
The forces of attraction is electrostatic forces of attraction.
It has a high melting point of 2,852 °C, and thus requires a large amount of energy go melting to occur.
Therefore, magnesium oxide is an ionic compound which requires a large amount of energy for melting.
Learn more about ionic compounds at: brainly.com/question/11638999
Slow it down - I believe?
Answer:
(a) 7.11x10⁻⁴ M/s
(b) 2.56 mol.L⁻¹.h⁻¹
Explanation:
(a) The reaction is:
O₃(g) + NO(g) → O₂(g) + NO₂(g) (1)
The reaction rate of equation (1) is given by:
(2)
<u>We have:</u>
k: is the rate constant of reaction = 3.91x10⁶ M⁻¹.s⁻¹
[O₃]₀ = 2.35x10⁻⁶ M
[NO]₀ = 7.74x10⁻⁵ M
Hence, to find the inital reacion rate we will use equation (2):
Therefore, the inital reaction rate is 7.11x10⁻⁴ M/s
(b) The number of moles of NO₂(g) produced per hour per liter of air is:
t = 1 h
V = 1 L
![\frac{\Delta[NO_{2}]}{\Delta t} = rate](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%20rate)
![\frac{\Delta[NO_{2}]}{\Delta t} = 7.11 \cdot 10^{-4} M/s*\frac{3600 s}{1 h} = 2.56 mol.L^{-1}.h{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%207.11%20%5Ccdot%2010%5E%7B-4%7D%20M%2Fs%2A%5Cfrac%7B3600%20s%7D%7B1%20h%7D%20%3D%202.56%20mol.L%5E%7B-1%7D.h%7B-1%7D)
Hence, the number of moles of NO₂(g) produced per hour per liter of air is 2.56 mol.L⁻¹.h⁻¹
I hope it helps you!
Enthalpy change refers to the overall amount of heat added or lost with each step as you progress through your reaction.
The answer is the last option.