Hydrogen and Oxygen by themselves have 1 and 6 valence electrons, respectively. 8 valence electrons is stable, so the atoms form bonds with each other to achieve 8 valence e-.
1 H atom + 1 H atom + 1 O atom = 8 valence e-
Answer:
No
Explanation:
given that, enthalpy is a state function, that means it depends only on the initial and final states, there is no difference between the enthalpy of a phase transition versus the enthalpy of a heating or cooling process, when the cooling or heating process finish in a change of phase.
It does not matter which way we take to cool or heat the substances the Enthalpy of this process will be the same.
Answer:
3. 75.0%
Explanation:
2 ClO2(g) + F2(g) → 2 FClO2(g)
First order with respect to ClO2 and F2.
This means the rate equation is given as;
Rate = k [ClO2][F2]
When the initial concentrations of ClO2 and F2 are equal?
Let's assume an initial value of 1 for both reactants, so rate equation is given as;
Rate = k * 1 * 1 = k
The rate after 25% of the F2 has reacted is what percent of the initial rate?
The concentration left of F2 is 75% ( 100% - 25%) = 0.75
Concentration of ClO2 remains 1.
So rate equation is given as;
Rate = k * 1 * 0.75 = 0.75 k
Comparing 0.75k and k.
This means our answer is;
3. 75.0%
Answer:
a. 2,9x10⁻⁴ M HCl
Explanation:
A solution is considered acidic when its concentration of H⁺ is higher than 1x10⁻⁷. The higher concentration of H⁺ will be the most acidic solution.
a. 2,9x10⁻⁴ M HCl. In water, this solution dissolves as H⁺ and Cl⁻. That means concentration of H⁺ is 2,9x10⁻⁴ M.
b. 4,5x10⁻⁵M HNO₃. In the same way, concentration of H⁺ is 4,5x10⁻⁵M.
c. 1,0x10⁻⁷M NaCl. As this solution doesn't produce H⁺, the solution is not acidic
d. 1,5x10⁻²M KOH. This solution produce OH⁻. That means the solution is basic nor acidic.
Thus, the solution considered the most acidic is a. 2,9x10⁻⁴ M HCl, because has the higher concentration of H⁺.
I hope it helps!
-NH2 is the most favorable for the reaction