1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
8

If a car increases its velocity from zero to 60 m/s in 10 seconds, its acceleration is

Physics
1 answer:
andrezito [222]3 years ago
5 0
We know that a=vf_vi/t equals equation "a" . Where a is the acceleration of the body , vf is the final velocity , vi is the initial velocity and t is equal to time . Since vi equals o m/s , vf equals to 60 m/s and t equals 10 s. Put in equation "a". a=60-0/10 =6m/s2
You might be interested in
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If
vampirchik [111]

Answer:

vcyl / vsph = 1.05

Explanation:

  • The kinetic energy of a rolling object can be expressed as the sum of a translational kinetic energy plus a rotational kinetic energy.
  • The traslational part can be written as follows:

       K_{trans} = \frac{1}{2}* M* v_{cm} ^{2}  (1)

  • The rotational part can be expressed as follows:

       K_{rot} = \frac{1}{2}* I* \omega ^{2}  (2)

  • where I = moment of Inertia regarding the axis of rotation.
  • ω = angular speed of the rotating object.
  • If the object has a radius R, and it rolls without slipping, there is a fixed relationship between the linear and angular speed, as follows:

       v = \omega * R (3)

  • For a solid cylinder, I = M*R²/2 (4)
  • Replacing (3) and (4)  in (2), we get:

       K_{rot} = \frac{1}{2}* \frac{1}{2} M*R^{2} * \frac{v_{cmc} ^{2}}{R^{2}} = \frac{1}{4}* M* v_{cmc}^{2}  (5)

  • Adding (5) and (1), we get the total kinetic energy for the solid cylinder, as follows:

       K_{cyl} = \frac{1}{2}* M* v_{cmc} ^{2}  +\frac{1}{4}* M* v_{cmc}^{2}  =  \frac{3}{4}* M* v_{cmc} ^{2} (6)

  • Repeating the same steps for the spherical shell:

        I_{sph} = \frac{2}{3} * M* R^{2} (7)  

       K_{rot} = \frac{1}{2}* \frac{2}{3} M*R^{2} * \frac{v_{cms} ^{2}}{R^{2}} = \frac{1}{3}* M* v_{cms}^{2}  (8)

      K_{sph} = \frac{1}{2}* M* v_{cms} ^{2}  +\frac{1}{3}* M* v_{cms}^{2}  =  \frac{5}{6}* M* v_{cms} ^{2} (9)

  • Since we know that both masses are equal each other, we can simplify (6) and (9), cancelling both masses out.
  • And since we also know that both objects have the same kinetic energy, this means that (6) are (9) are equal each other.
  • Rearranging, and taking square roots on both sides, we get:

       \frac{v_{cmc}}{v_{cms}} =\sqrt{\frac{10}{9} } = 1.05 (10)

  • This means that the solid cylinder is 5% faster than the spherical shell, which is due to the larger moment of inertia for the shell.
3 0
2 years ago
Please explain what is a Energy is
professor190 [17]

Answer:

<h2><u>The capacity or power to do work/ The ability to do work. </u></h2>

Explanation:

such as the capacity to move an object (of a given mass) by the application of force. Energy can exist in a variety of forms, such as electrical, mechanical, chemical, thermal, or nuclear, and can be transformed from one form to another

I hope this help:)

8 0
2 years ago
A student rides a bicycle for 15 miles in 3 hours. What is the student's speed? What else would you need to know for the velocit
kaheart [24]

Answer:

5 miles per hour

Explanation:

if you divide 15 by 3 you get 5, therefore the student is going 5 miles per hour.

3 0
2 years ago
Find the orbital speed v for a satellite in a circular orbit of radius R.Express the orbital speed in terms of G, M, and R.
AlekseyPX
<h2>Answer:V=\sqrt{G\frac{M}{R}}  </h2>

The velocity of a satellite describing a circular orbit is <u>constant</u> and defined by the following expression:

V=\sqrt{G\frac{M}{R}}     (1)

Where:

G is the gravity constant

M the mass of the massive body around which the satellite is orbiting

R the radius of the orbit (measured from the center of the planet to the satellite).

Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. I<u>t depends on the mass of the massive body.</u>

In addition, this orbital speed is constant because at all times <u>both the kinetic energy and the potential remain constant</u> in a circular (closed) orbit.

5 0
3 years ago
According to the law of refraction, light passing from air into a piece of glass at an angle of 30 degrees will cause the light
pantera1 [17]

Answer:

bend toward the normal line

Explanation:

When light passes from a less dense to a more dense substance, (for example passing from air into water), the light is refracted (or bent) towards the normal.   In your question the light is moving from rarer to denser medium

4 0
3 years ago
Other questions:
  • a 7.26kg bowling ball (16 pounds) is at rest at the end of the bowling lane. : how long did you push the ball in this situation
    15·1 answer
  • Which parts of the spectrum show the presence of elements in the stars atmosphere
    5·2 answers
  • According to the law of conservation of mass, in all chemical reactions _____. changing the bonds changes the mass total mass is
    10·2 answers
  • Explain how the "natural frequency" of objects must be considered/analyzed in places like concert halls and airplanes.
    9·1 answer
  • According to Auto Week magazine, a Chevrolet Blazer traveling at 60 mph (97 km/h) can stop in 8 m on a level road. Determine the
    7·1 answer
  • A cyclist accelerates from 0 m/s [S] to be 15 m/s [S] in 4 s. What is his acceleration?
    8·1 answer
  • Please help me answer this question! Will appreciate help very much. a) Draw a circuit to show 3 lights in series b) Draw a circ
    7·1 answer
  • The product of an object’s mass and velocity
    11·2 answers
  • Suppose the Helmholtz coil in this experiment is arranged to produce a magnetic field that points east. The current through the
    5·1 answer
  • A spring had a spring constant of 48N/m. The end of the spring hangs 8m above the ground. How much weight can be placed on the s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!