The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25
The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.
When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
To learn more about energy
brainly.com/question/582060
#SPJ4
Mass of the object m = 2.9 kg
Force F1 = 28.449 N
F1 = m1 x a => a = F / m => 28.449 / 2.9 => a = 9.81, which is gravitational acceleration.
In the same lab, a = g = 9.81, second object F2 = 48.7N = m2 x a
m2 = F2 / a => 48.7 / 9.81 => m2 = 4.96 kg
Mass of the second object m2 = 4.96 kg
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
Answer:
Acceleration of the bullet will be 1778835.6
Explanation:
We have given length of the barrel refile s= 0.855 m
When the bullet leaves the muzzle its velocity is 553 m/sec
So final velocity v = 553 m/sec
Initial velocity will be 0 that is u = 0 m/sec
According to third equation of motion 

