1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
3 years ago
6

Use one or more transformations to transform the pre-image (purple) onto the image (white).

Mathematics
1 answer:
kherson [118]3 years ago
5 0
Answer:

1. Dilate it to the same size as the white one
2. Rotate it until it is facing the same direction
3. Translate it on top of the white one as directed

Hope this helps!
You might be interested in
Please answer correctly this is for a test plus you get 10 points
Korvikt [17]

The answer to the question is 112°

First, you must set up an equation to find x.

2(3x+10)+2(2x)=360\\

Then, you must use distributive property to simplify the parentheses.

6x+20+4x=360

Next, add like terms.

10x+20=360

Then, subtract 20 on each side.

10x=340

Next, divide 10 on each side.

x=34

Now, you must substitute 34 in for x.

3x+10

3(34)+10

3(34)+10=112

8 0
3 years ago
What is 500-10x80+60 equal??
Sholpan [36]

Answer:

-240

Step-by-step explanation:

500 - 800 + 60

= -300 + 60 = -240

5 0
3 years ago
Read 2 more answers
A basketball team scored 60 points in the first
Vikentia [17]
The answer should be 43
51 x 3 = 153
153-60-50=43
3 0
3 years ago
Read 2 more answers
Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well
Aleks04 [339]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Miguel is a golfer, and he plays on the same course each week. The following table shows the probability distribution for his score on one particular hole, known as the Water Hole.  

Score 3 4 5 6 7

Probability 0.15 0.40 0.25 0.15 0.05

Let the random variable X represent Miguel’s score on the Water Hole. In golf, lower scores are better.

(a) Suppose one of Miguel’s scores from the Water Hole is selected at random. What is the probability that Miguel’s score on the Water Hole is at most 5 ? Show your work.

(b) Calculate and interpret the expected value of X . Show your work.

A potential issue with the long hit is that the ball might land in the water, which is not a good outcome. Miguel thinks that if the long hit is successful, his expected value improves to 4.2. However, if the long hit fails and the ball lands in the water, his expected value would be worse and increases to 5.4.

c) Suppose the probability of a successful long hit is 0.4. Which approach, the short hit or long hit, is better in terms of improving the expected value of the score?

(d) Let p represent the probability of a successful long hit. What values of p will make the long hit better than the short hit in terms of improving the expected value of the score? Explain your reasoning.

Answer:

a) 80%

b) 4.55

c) 4.92

d) P > 0.7083

Step-by-step explanation:

Score  |   Probability

3          |      0.15

4          |      0.40

5          |      0.25

6          |      0.15

7          |      0.05

Let the random variable X represents Miguel’s score on the Water Hole.

a) What is the probability that Miguel’s score on the Water Hole is at most 5 ?

At most 5 means scores which are equal or less than 5

P(at most 5) = P(X ≤ 5) = P(X = 3) + P(X = 4) + P(X = 5)

P(X ≤ 5) = 0.15 + 0.40 + 0.25

P(X ≤ 5) = 0.80

P(X ≤ 5) = 80%

Therefore, there is 80% chance that Miguel’s score on the Water Hole is at most 5.

(b) Calculate and interpret the expected value of X.

The expected value of random variable X is given by

E(X) = X₃P₃ + X₄P₄ + X₅P₅ + X₆P₆ + X₇P₇

E(X) = 3*0.15 + 4*0.40 + 5*0.25 + 6*0.15 + 7*0.05

E(X) = 0.45 + 1.6 + 1.25 + 0.9 + 0.35

E(X) = 4.55

Therefore, the expected value of 4.55 represents the average score of Miguel.

c) Suppose the probability of a successful long hit is 0.4. Which approach, the short hit or long hit, is better in terms of improving the expected value of the score?

The probability of a successful long hit is given by

P(Successful) = 0.40

The probability of a unsuccessful long hit is given by

P(Unsuccessful) = 1 - P(Successful)

P(Unsuccessful) = 1 - 0.40

P(Unsuccessful) = 0.60

The expected value of successful long hit is given by

E(Successful) = 4.2

The expected value of Unsuccessful long hit is given by

E(Unsuccessful) = 5.4

So, the expected value of long hit is,

E(long hit) = P(Successful)*E(Successful) + P(Unsuccessful)*E(Unsuccessful)

E(long hit) = 0.40*4.2 + 0.60*5.4

E(long hit) = 1.68 + 3.24

E(long hit) = 4.92

Since the expected value of long hit is 4.92 which is greater than the value of short hit obtained in part b that is 4.55, therefore, it is better to go for short hit rather than for long hit. (Note: lower expected score is better)

d) Let p represent the probability of a successful long hit. What values of p will make the long hit better than the short hit in terms of improving the expected value of the score?

The expected value of long hit is given by

E(long hit) = P(Successful)*E(Successful) + P(Unsuccessful)*E(Unsuccessful)

E(long hit) = P*4.2 + (1 - P)*5.4

We want to find the probability P that will make the long hit better than short hit

P*4.2 + (1 - P)*5.4 < 4.55

4.2P + 5.4 - 5.4P < 4.55

-1.2P + 5.4 < 4.55

-1.2P < -0.85

multiply both sides by -1

1.2P > 0.85

P > 0.85/1.2

P > 0.7083

Therefore, the probability of long hit must be greater than 0.7083 that will make the long hit better than the short hit in terms of improving the expected value of the score.

6 0
3 years ago
An experiment consists of tossing a die and then flipping a coin once if the number on the die is even. If the number on the die
Mice21 [21]

Answer:

\Omega = \{ 1HH, 1HT, 1TH, 1TT, 2H, 2T, 3HH, 3HT, 3TH, 3TT, 4H, 4T,\\5HH , 5HT, 5TH, 5TT, 6H, 6T \}

The probability is 3/12. The third option is correct.

Step-by-step explanation:

The sample space is

\Omega = \{ 1HH, 1HT, 1TH, 1TT, 2H, 2T, 3HH, 3HT, 3TH, 3TT, 4H, 4T,\\5HH , 5HT, 5TH, 5TT, 6H, 6T \}

Note that this sample space is not equally probable.

The probability of getting a given number followed is the probability of getting an even number from the 6 numbers (3/6) multiplied by the probability of getting a head after getting that even number, that is 1/2, because is equally probable to get heads or tails from one single coin toss (note that we are assuming that the dice was even, thats why there is a single coin toss).

Therefore, the probability of getting an even number and a head is

P( D in {2,4,6} , H = 1) = P(D in {2,4,6}) * P(H=1 | D in {2,4,6}) = 3/6 * 1/2 = 3/12.

5 0
3 years ago
Other questions:
  • Perform the following:
    7·1 answer
  • Can you help please :)
    9·2 answers
  • Find the value of pq- r/4 when p = -8, q= -3, and r=68
    10·1 answer
  • Plz help <br> z + 8+2 over 3 £-4
    5·1 answer
  • Add: 3 3/8 + 7 3/4 !!!!!!!!!!
    9·2 answers
  • Plz help will give crown
    13·2 answers
  • "The following is a kite. Find m<br> Q=79<br> R=(11x-6)<br> S=79<br> T=(4x+13)
    9·1 answer
  • A=3b+c. solving for b.
    11·2 answers
  • Determine the approximate value of angle A​
    7·1 answer
  • If function g has the factors (x − 7) and (x 6), what are the zeros of function g? a. -7 and 6 b. -6 and 7 c. 6 and 7 d. -7 and
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!