Answer:
first option is not true
Explanation:
1 mole = 6.02 × 10²³ particles
C3H8 has 1 mole, so has 6.02 × 10²³ particles
5O2 has 5 moles so 5 × 6.02 × 10²³ = 3.01 × 10²⁴ particles
3CO2 has 3 moles so 3 × 6.02 × 10²³ = 1.806 × 10²⁴ particles
4H2O has 4 moles so 4 × 6.02 × 10²³ = 2.408 × 10²⁴ particles
Carbon:
1s is filled. 2s is filled. 2p is shown to contain two electrons in one orbital and no electrons in the other two orbitals.
Curiosity's mission is to determine whether the Red Planet ever was, or is, habitable to microbial life. The rover, which is about the size of a MINI Cooper, is equipped with 17 cameras and a robotic arm containing a suite of specialized laboratory-like tools and instruments.
We are told that there are 1.55 x 10²³ molecules of Cl₂ and we need to calculate the mass of these molecules. We need to do several conversions. The easiest will be to convert the amount of molecules to the number of moles present. To do this, we need to use Avogadro's number which is 6.022 x 10²³ molecules/mole.
1.55 x 10²³ molecules / 6.022 x 10²³ molecules/mole = 0.257 moles Cl₂
Now that we have the moles of Cl₂ present, we can convert this value to a mass of Cl₂ by using the molecular mass of Cl₂. The molecular mass is 70.906 g/mol.
0.257 moles Cl₂ x 70.906 g/mol = 18.3 g Cl₂
Therefore, 1.55 x 10²³ molecules of Cl₂ will have a mass of 18.3 g.