Seismic waves hope this helps.
Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
Answer:
B. Ca2+ import into the ER because it has the steeper concentration gradient
Explanation:
ΔGt = RT㏑(C₂/C₁)
where ΔGt is the free energy change for transport; R = 8.315 J/mol; T = 298 K; C₂/C₁ is ratio of concentrations inside and outside each organelle.
For Ca²⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑(10⁻³/10⁻⁷)
ΔGt= 3.42 kJ/mol
For H⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑ (10⁻⁴/10⁻⁷)
ΔGt = 2.73 kJ/mol
From the above values, ΔGt is greater for Ca²⁺ import because it has a steeper concentration gradient
Answer: Thus the new volume of the gas is 530 ml
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 740 torr
= final pressure of gas = 760 torr
= initial volume of gas = 500 ml
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the new volume of the gas is 530 ml