Characteristics of acid
-It tastes sour
-It reacts with metals and carbonates
-It turns blue litmus paper red
Characteristics of base
-It tastes bitter
-It feels slippery
-It turns red litmus paper blue.
Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
40×19.32/100=7.7=8×2=16Ca
35.5×34.30/100=12.1=12×2=24Cl
16×46.38/100=7.4=7×2=14O
The net ionic equation of the reaction could be determined by cancelling out the like ions between both sides of the reaction. These ions are called spectator ions. They are called as such because they do not actively participate in the reaction. The spectator ions are Na+ and Cl-. When you cancel those, the equation would become letter D.
In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)