Answer:
In this era, Sun Ra was among the first of any musicians to make extensive and pioneering use of synthesizers and other various electronic keyboards; he was given a prototype Minimoog by its inventor, Robert Moog.
Explanation:
Answer:
a) 2.18 m/s^2
b) 9.83 m/s
Explanation:
The flywheel has a moment of inertia
J = m * k^2
Where
J: moment of inertia
k: radius of gyration
In this case:
J = 144 * 0.45^2 = 29.2 kg*m^2
The block is attached through a wire that is wrapped around the wheel. The weight of the block causes a torque.
T = p * r
r is the radius of the wheel.
T = m1 * g * r
T = 18 * 9.81 * 0.6 = 106 N*m
The torque will cause an acceleration on the flywheel:
T = J * γ
γ = T/J
γ = 106/29.2 = 3.63 rad/s^2
SInce the block is attached to the wheel the acceleration of the block is the same as the tangential acceleration at the eddge of the wheel:
at = γ * r
at = 3.63 * 0.6 = 2.81 m/s^2
Now that we know the acceleration of the block we can forget about the flywheel.
The equation for uniformly accelerated movement is:
X(t) = X0 + V0*t + 1/2*a*t^2
We can set a frame of reference that has X0 = 0, V0 = 0 and the X axis points in the direction the block will move. Then:
X(t) = 1/2*a*t^2
Rearranging
t^2 = 2*X(t)/a


It will reach the 1.8 m in 3.6 s.
Now we use the equation for speed under constant acceleration:
V(t) = V0 + a*t
V(3.6) = 2.81 * 3.6 = 9.83 m/s
Two forces P and Q whose resultant is 10Newton are at right angles to each other. If P makes 30 degrees with resultant.Show me the workings of the magnitude of Q in Newton and the diagram of the vectors.
Answer:
A) 209.12 GPa
B) 105.41 GPa
Explanation:
We are given;
Modulus of elasticity of the metal; E_m = 67 GPa
Modulus of elasticity of the oxide; E_f = 390 GPa
Composition of oxide particles; V_f = 44% = 0.44
A) Formula for upper bound modulus of elasticity is given as;
E = E_m(1 - V_f) + (E_f × V_f)
Plugging in the relevant values gives;
E = (67(1 - 0.44)) + (390 × 0.44)
E = 209.12 GPa
B) Formula for upper bound modulus of elasticity is given as;
E = 1/[(V_f/E_f) + (1 - V_f)/E_m]
Plugging in the relevant values;
E = 1/((0.44/390) + ((1 - 0.44)/67))
E = 105.41 GPa