Answer:
Exit velocity
m/s.
Explanation:
Given:
At inlet:

Properties of steam at 100 bar and 600°C

At exit:Lets take exit velocity 
We know that if we know only one property inside the dome then we will find the other property by using steam property table.
Given that dryness or quality of steam at the exit of nozzle is 0.85 and pressure P=80 bar.So from steam table we can find the other properties.
Properties of saturated steam at 80 bar

So the enthalpy of steam at the exit of turbine



Now from first law for open system

In the case of adiabatic nozzle Q=0,W=0

m/s
So Exit velocity
m/s.
Answer:
risk = probability x loss
Explanation:
Properties of Carpenter's hammer possess
Explanation:
1.The head of a carpenter's hammer should possess the impact resistance, so that the chips do not peel off the striking face while working.
2.The hammer head should also be very hard, so that it does not deform while driving or eradicate any nails in wood.
3.Carpenter's hammer is used to impact smaller areas of an object.It can drive nails in the wood,can crush the rock and shape the metal.It is not suitable for heavy work.
How hammer head is manufactured :
1.Hammer head is produced by metal forging process.
2.In this process metal is heated and this molten metal is placed in the cavities said to be dies.
3.One die is fixed and another die is movable.Ram forces the two dies under the forces which gives the metal desired shape.
4.The third process is repeated for several times.
Answer:
b). The same for all pipes independent of the diameter
Explanation:
We know,


From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.
We also know,
Factors on which thermal resistance of insulation depends are :
1. Thickness of the insulation
2. Thermal conductivity of the insulating material.
Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.