1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
2 years ago
10

WHAT IS THE UNBALANCED FORCE THAT SLOWS DOWN SLIDING DESKS AND MOVING CARS

Physics
2 answers:
gogolik [260]2 years ago
6 0
Friction is a forces that slows things down.
umka2103 [35]2 years ago
3 0
Friction slows it down
You might be interested in
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
A student standing on a stationary skateboard tosses a textbook with a mass of mb = 1.35 kg to a friend standing in front of him
nataly862011 [7]

Answer:

a) u_c=0\ m.s^{-1}       &        m_c.v_c=m_b.v_b\times \cos\theta

b) v_c=0.0566\ m.s^{-1}

c) p_e=2.9218\ kg.m.s^{-1}

Explanation:

Given:

mass of the book, m_b=1.35\ kg

combined mass of the student and the skateboard, m_c=97\ kg

initial velocity of the book, v_b=4.61\ m.s^{-1}

angle of projection of the book from the horizontal, \theta=28^{\circ}

a)

velocity of the student before throwing the book:

Since the student is initially at rest and no net force acts on the student so it remains in rest according to the Newton's first law of motion.

u_c=0\ m.s^{-1}

where:

u_c= initial velocity of the student

velocity of the student after throwing the book:

Since the student applies a force on the book while throwing it and the student standing on the skate will an elastic collision like situation on throwing the book.

m_c.v_c=m_b.v_b\times \cos\theta

where:

v_c= final velcotiy of the student after throwing the book

b)

m_c.v_c=m_b.v_b\times \cos\theta

97\times v_c=1.35\times 4.61\cos28

v_c=0.0566\ m.s^{-1}

c)

Since there is no movement of the student in the vertical direction, so the total momentum transfer to the earth will be equal to the momentum of the book in vertical direction.

p_e=m_b.v_b\sin\theta

p_e=1.35\times 4.61\times \sin28^{\circ}

p_e=2.9218\ kg.m.s^{-1}

6 0
2 years ago
what is your weight in newtons if your potential energy is equal to 1000 joules and your mass is 60 kg
Darina [25.2K]

Your potential energy and mass don't tell what your weight is.

If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.

6 0
3 years ago
Read 2 more answers
Cellular respiration is an example of a chemical reaction where energy is released. Which of the following is a reaction where e
SSSSS [86.1K]
C. Dissolution reaction
6 0
3 years ago
The process in  which water ice wind and gravity drop newly formed sedinments is called
zhannawk [14.2K]
It's called sedimentation. And erosion is when the rock is worn away by the water, and wind and becomes sediment. 
4 0
2 years ago
Read 2 more answers
Other questions:
  • Which term refers to the rate of change of motion?
    7·1 answer
  • As the temperature of a sample of gas decreases, the kinetic energy of the particles _____.
    14·1 answer
  • An object began moving at the starting point (0,0) on the graph. The average speed of the object for the entire trip of 5.0 hour
    9·2 answers
  • Can an object emit different portions of the electromagnetic spectrum at the same time?
    15·1 answer
  • (PLEASE HELP ASAP) Which chemical equation models the law of conservation of mass?
    5·2 answers
  • The addition of electron shells results in _____
    14·1 answer
  • Pls help!! science. ​
    5·1 answer
  • Using a simple model of an electromagnet, describe the factors that increase the magnetic field strength of an electromagnet.(2
    6·1 answer
  • Which statement about metals is true?
    5·1 answer
  • Use the table to answer the question.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!