Answer:
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen
=
atoms
17.5 mole of hydrogen
=
atoms
There are
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
When you are collecting DNA, you could be looking for a few different things. A few examples could be skin cells, strands of hair, or possibly even a fingernail. Anything that comes from a person, including blood or saliva can be potential DNA that could help investigators to link a person back to a crime.
Investigators do not need a warrant for analyzing crime scenes due to the fact of the dangers of the fire. You must work quickly because accelerants tend to evaporate within days, sometimes hours. It is also important to note that finding the origin of the fire is very important, to make sure it won't be reignited. Debris is usually cleaned away quickly to ensure health and safety issues.
The point of origin of a fire is the lowest point, since fire burns upwards.
High explosive: Ignite almost instantly, like dynamite and TNT. Two different types are primary and secondary.
<em>Primary: easily ignited, very sensitive to heat and friction. often used to ignite other explosives. </em>
<em>Secondary: much less sensitive to heat and friction, might be ignited using other explosive materials. TNT and dynamite are both secondary. </em>
Low explosive: decompose slowly and include black and smokeless powder. They are the most common type of explosives, and are readily available.
Answer:
Explanation:
Metal elements form positively charged ions called cations because they are located on the left side of the periodic table These elements all have valence electrons in an s orbital. These electrons are relatively easy for the atom to lose to achieve a stable octet of electrons in its outermost energy shell.
Answer:
water was added to powdered rock
Explanation:
When the same species undergoes both oxidation and reduction in a single redox reaction, this is referred to as a disproportionation. Therefore, divide it into two equal reactions.
NO2→NO^−3
NO2→NO
and do the usual changes
First, balance the two half reactions:
3. NO2 +H2O →NO^−3 + 2 H^+ + e−
4. NO2 +2 H^+ + 2e− → NO + H2O
Now multiply one or both half-reactions to ensure that each has the same number of electrons. Here, Eqn (3) x 2 results in each half-reaction having two electrons:
5. 2 NO2 + 2 H2O → 2 NO^−3 + 4H^+ + 2e−
Now add Eqn 4 and 5 (the electrons now cancel each other):
3NO2 + 2H^+ + 2H2O → NO + 2 NO−3 + H2O + 4H+
and cancel terms that’s common to both sides:
3NO2 + H2O → NO + 2NO^−3 + 2H+
This is the net ionic equation describing the oxidation of NO2 to NO3 in basic solution.
Learn more about balancing equation here:
brainly.com/question/26227625
#SPJ4