Answer:
Metallic Bonding
Explanation:
Metallic Bonding
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g
Answer: The sun is closer to the Earth is the summer and farther in the winter causing it to be hotter than it is colder in the summer and vise versa for the other question.
Explanation: I learned it ;)
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.