1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
12

Which type of reaction happens when a base is mixed with an acid? question 1 options:?

Chemistry
1 answer:
madreJ [45]3 years ago
7 0
Chemicals cancel each other out and produce a salt and water. A neutralization reaction my also occur
You might be interested in
You've probably heard that some types of bacteria can cause infections and make you sick.
Novosadov [1.4K]

Answer:

<u>(A) Plants would probably not have enough nitrogen.</u>

Explanation:

<em>According to the passage, bacteria help us digest our food and make yogurt. But it is the bacteria in the soil specifically that "Cycle nitrogen through the ecosystem, which plants rely on"</em>

6 0
2 years ago
Explain how the igneous rock granite forms. Then tell how the granite might become the sedimentary rock sandstone and then the m
otez555 [7]

Answer:

There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle. Sedimentary Rocks Sedimentary rocks are formed from pieces of other existing rock or organic material. There are three different types of sedimentary rocks: clastic, organic (biological), and chemical. Clastic sedimentary rocks, like sandstone, form from clasts, or pieces of other rock. Organic sedimentary rocks, like coal, form from hard, biological materials like plants, shells, and bones that are compressed into rock. The formation of clastic and organic rocks begins with the weathering, or breaking down, of the exposed rock into small fragments. Through the process of erosion, these fragments are removed from their source and transported by wind, water, ice, or biological activity to a new location. Once the sediment settles somewhere, and enough of it collects, the lowest layers become compacted so tightly that they form solid rock. Chemical sedimentary rocks, like limestone, halite, and flint, form from chemical precipitation. A chemical precipitate is a chemical compound—for instance, calcium carbonate, salt, and silica—that forms when the solution it is dissolved in, usually water, evaporates and leaves the compound behind. This occurs as water travels through Earth’s crust, weathering the rock and dissolving some of its minerals, transporting it elsewhere. These dissolved minerals are precipitated when the water evaporates. Metamorphic Rocks Metamorphic rocks are rocks that have been changed from their original form by immense heat or pressure. Metamorphic rocks have two classes: foliated and nonfoliated. When a rock with flat or elongated minerals is put under immense pressure, the minerals line up in layers, creating foliation. Foliation is the aligning of elongated or platy minerals, like hornblende or mica, perpendicular to the direction of pressure that is applied. An example of this transformation can be seen with granite, an igneous rock. Granite contains long and platy minerals that are not initially aligned, but when enough pressure is added, those minerals shift to all point in the same direction while getting squeezed into flat sheets. When granite undergoes this process, like at a tectonic plate boundary, it turns into gneiss (pronounced “nice”). Nonfoliated rocks are formed the same way, but they do not contain the minerals that tend to line up under pressure and thus do not have the layered appearance of foliated rocks. Sedimentary rocks like bituminous coal, limestone, and sandstone, given enough heat and pressure, can turn into nonfoliated metamorphic rocks like anthracite coal, marble, and quartzite. Nonfoliated rocks can also form by metamorphism, which happens when magma comes in contact with the surrounding rock. Igneous Rocks Igneous rocks (derived from the Latin word for fire) are formed when molten hot material cools and solidifies. Igneous rocks can also be made a couple of different ways. When they are formed inside of the earth, they are called intrusive, or plutonic, igneous rocks. If they are formed outside or on top of Earth’s crust, they are called extrusive, or volcanic, igneous rocks. Granite and diorite are examples of common intrusive rocks. They have a coarse texture with large mineral grains, indicating that they spent thousands or millions of years cooling down inside the earth, a time course that allowed large mineral crystals to grow.

Alternatively, rocks like basalt and obsidian have very small grains and a relatively fine texture. This happens because when magma erupts into lava, it cools more quickly than it would if it stayed inside the earth, giving crystals less time to form. Obsidian cools into volcanic glass so quickly when ejected that the grains are impossible to see with the naked eye. Extrusive igneous rocks can also have a vesicular, or “holey” texture. This happens when the ejected magma still has gases inside of it so when it cools, the gas bubbles are trapped and end up giving the rock a bubbly texture. An example of this would be pumice.

Explanation:

oh and also nice profile pic :P

5 0
3 years ago
Consider the reaction of gaseous hydrogen with gaseous oxygen to produce gaseous water. Given that the first picture represents
Bogdan [553]

The question is incomplete. There's missing the image, which is shown below.

Answer:

Volume of O₂ = 6 L, volume of mixture: 18 L, volume of H₂O = 12 L, molecule volume of H₂O = 0.667 molecule/L

Explanation:

The reaction between hydrogen gas and oxygen gas to form water is:

2H₂(g) + O₂(g) → 2H₂O(g)

So, for 1 mol of O₂ is necessary 2 moles of H₂ form 2 moles of H₂O. As the images below there's 8 molecules of H₂, 4 molecules of O₂, 12 molecules in the mixture, and 8 molecules of H₂O. Thus, there are stoichiometric values.

All the images are at the same temperature and pressure, so, by the ideal gas law:

PV= nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

The number of moles and molecules are related, so let's substitute it in the equation. For the H₂:

P*12 = 8*RT

RT/P = 12/8 = 1.5

Thus, for O₂:

PV= nRT

V = n*(RT/P)

V = 4*1.5 = 6 L

For the mixture:

V = 12*1.5 = 18 L

For H₂O:

V = 8*1.5 = 12 L

The molecule volume is the number of molecules divided by the volume they occupy, thus for water: 8/12 = 0.667 molecules/L

6 0
3 years ago
A force between charged objects
Darya [45]

Answer:

Coulomb's law, mathematical description of the electric force between charged objects. Formulated by the 18th-century French physicist Charles-Augustin de Coulomb, it is analogous to Isaac Newton's law of gravity.

Explanation:

Soo yeah I think this can help you

3 0
3 years ago
1 How is the density of a substance calculated? 
user100 [1]
Sorry for the scribbles lol

4 0
3 years ago
Other questions:
  • When burning methane gas, which outcome best demonstrates the law of conservation of mass?
    6·1 answer
  • Which equation correctly relates the heat of reaction to the standard heats of formation?
    9·1 answer
  • Determine the number of atoms in 1.70 ml of mercury. (the density of mercury is 13.5 g/ml.)
    13·1 answer
  • HNO2+ F- &lt;—&gt; HF + NO2 in the reverse reaction HF is a/an
    11·1 answer
  • 3.
    9·1 answer
  • Anyone know Jacob whitesides
    14·1 answer
  • Sorry the last one wasn’t 99 points but this one is 14 points sorry! But 14 points is a lot right? so please be prepared! Hshsuu
    14·2 answers
  • PLEASE HELP WITH MY CHEM ASSIGNMENT!!!
    6·1 answer
  • What is Stoichiometric Calculations
    10·2 answers
  • A sample of 85.5 g of tetraphosphorous decoxide (P4O10) reacts with 74.9 g of water to produce phosphoric acid (H3PO4) according
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!