(186,000 mi/sec) x (3,600 sec/hr) x (24 hr/da) x (365 da/yr)
= (186,000 x 3,600 x 24 x 365) mi/yr
= 5,865,696,000,000 miles per year (rounded to the nearest million miles)
Answer:
Check the explanation
Explanation:
The escape velocity is the velocity needed by any object to overcome the gravitational force of the planet on which it’s present. Now we know that the gravitational force is directly proportional to the mass of the planet and inversely proportional to the distance of the object from the center of planet.
If we keep the mass of earth constant and decrease the size of the earth than this will decrease the distance between the object and the center of the earth and thus the gravitational force that will act on the body will increase substantially which will in turn increase the value of the escape velocity.
The value of escape velocity will keep on increasing as the size of the earth will shrink till it reaches to a point when the value of escape velocity becomes more than the speed of light and since it’s impossible to travel with a speed greater than the speed of light and therefore at this point it will become impossible for a spacecraft to escape the earth.
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as

from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is

so the current is halved.
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s