1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
3 years ago
8

Find 10 partial sums of the series. (round your answers to five decimal places.) ∞ 15 (−4)n n = 1

Mathematics
1 answer:
nikklg [1K]3 years ago
7 0
Given

\Sigma_{n=1}^\infty15(-4)^n

The first 10 partial sums are as follows:

S_1=\Sigma_{n=1}^{1}15(-4)^n=15(-4)=\bold{-60} \\  \\ S_2=\Sigma_{n=1}^{2}15(-4)^n=\Sigma_{n=1}^{1}15(-4)^n+15(-4)^2 \\ =-60+15(16)=-60+240=\bold{180} \\  \\ S_3=\Sigma_{n=1}^{3}15(-4)^n=\Sigma_{n=1}^{2}15(-4)^n+15(-4)^3 \\ =180+15(-64)=180-960=\bold{-780} \\  \\ S_4=\Sigma_{n=1}^{4}15(-4)^n=\Sigma_{n=1}^{3}15(-4)^n+15(-4)^4 \\ =-780+15(256)=-780+3,840=\bold{3,060} \\  \\ S_5=\Sigma_{n=1}^{5}15(-4)^n=\Sigma_{n=1}^{4}15(-4)^n+15(-4)^5 \\ =3,060+15(-1,024)=3,060-15,360=\bold{-12,300}

S_6=\Sigma_{n=1}^{6}15(-4)^n=\Sigma_{n=1}^{5}15(-4)^n+15(-4)^6 \\ =-12,300+15(4,096)=-12,300+61,440=\bold{49,140}

The rest of the partial sums can be obtained in similar way.
You might be interested in
Help please!<br> - Write a recursive formula for a an =12+(n−1)10.
marta [7]

Answer:

12/(n-1)=10/(n+3). 12n−1=10n+3 12 n - 1 = 10 n + 3

Step-by-step explanation:

8 0
3 years ago
The minimum angle of rotation to map the given image onto itself is
Kobotan [32]

Answ

90

Step-by-step explanation:

because you have add 90 for all of them

4 0
3 years ago
Read 2 more answers
Four artists open a business selling paintings and agree to split the profits equally. They spent $150 on supplies. If their tot
Stella [2.4K]
870 - 150 = 720
720 / 4 = 180 ....each person gets $ 180
6 0
3 years ago
Desperate Please Hurry Up
valentina_108 [34]

Answer:

10 i think

Step-by-step explanation:

3 0
3 years ago
Start with the geometric power series LaTeX: 1+x+x^2+x^3+x^4+\cdots Substitute LaTeX: -x^3in place of LaTeX: x, and then take a
valina [46]

Answer:

-3x^2+6x^5-9x^8+12x^{11}+...=\sum_{n=1}^{\infty }\left ( -1 \right )^n\,\,3n\,\,x^{3n-1}

Step-by-step explanation:

Given : 1+x+x^2+x^3+x^4+\cdots

On putting -x^3 in place of x , we get 1+\left ( -x^3 \right )+\left ( -x^3 \right )^2+\left ( -x^3 \right )^3+\left ( -x^3 \right )^4+...

On simplifying , we get 1-x^3+x^6-x^9+x^{12}+...

On differentiating , we get \left ( 1-x^3+x^6-x^9+x^{12}+... \right )'=-3x^2+6x^5-9x^8+12x^{11}+...

Here ,

-3x^2=\left ( -1 \right )^1\,3(1)x^{3(1)-1}\\6x^5=\left ( -1 \right )^2\,\,3(2)\,\,x^{3(2)-1}\\-9x^8=\left ( -1 \right )^3\,\,3(3)\,\,x^{3(3)-1}\\12x^{11}=\left ( -1 \right )^4\,\,3(4)\,\,x^{3(4)-1}

Now , we need to express it using summation notation.

\left ( 1-x^3+x^6-x^9+x^{12}+... \right )'=-3x^2+6x^5-9x^8+12x^{11}+...=\sum_{n=1}^{\infty }\left ( -1 \right )^n\,\,3n\,\,x^{3n-1}

4 0
3 years ago
Other questions:
  • If 280=n, then 350=<br> A) N/4<br> B)4N/5<br> C)4N/3<br> D)5N/4
    5·1 answer
  • Arun’s restaurant bill is $58, and he wants to leave the waiter an 18 percent tip. What will Arun’s total bill be? $10.44 $47.56
    5·3 answers
  • Need help with this question
    15·1 answer
  • Walter’s history test scores and Janine’s history test scores are shown on the dot plot below.
    5·2 answers
  • C²+5c-24=0 cant figure out how to solve this
    15·2 answers
  • If the function y = sin(x) is transformed to y = sin(2x), how does the graph change?
    7·1 answer
  • Does anyone know how to define percents
    9·2 answers
  • While on vacation, Craig bought a pair of sunglasses for $15.98, a hat for $7.99, 5 postcards, and a beach towel. The beach towe
    7·2 answers
  • For extra credit please help solve​
    8·1 answer
  • Show all steps. Simplify using order of operations plz help me asap
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!