Answer: 287.8 cm3
Explanation:
Given that:
Initial volume of gas V1 = 350 cm3
Initial pressure of gas P1 = 740 mmHg
New volume V2 = ?
New pressure P2 = 900 mmHg
Since, pressure and volume are involved while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
740 mmHg x 350 cm3 = 900mmHg x V2
V2 = (740 mmHg x 350 cm3) /900mmHg
V2 = 259000 mmHg cm3 / 900mmHg
V2 = 287.8 cm3
Thus, the gas will occupy 287.8 cubic centimeters at the new pressure.
Answer:
go to the store to buy more batteries
Explanation:
Answer:
B
Explanation:
idk how to explain, B is the definition of conduction
The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
We do a heat balance to solve this:
(m cp ΔT)water = -(m cp ΔT)metal
100.8 (4.18) (27 - 22) = -65 (cp)(27-100)
cp = 100.8 (4.18) (27 - 22) / (-65 (27-100))
cp = 0.44 J/ (°C × g)
The specific heat of the metal is 0.44 J/ (°C × g)