The volume of rain that fells in the field is simply given by the area of the field, which is

multiplied by the height of rain that fell, which is

Therefore, the volume is

Answer:
<h2>The answer is planetary motion</h2>
Explanation:
According to Johannes Kepler, the laws governing planetary motion
states that:
1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
2. A line segment joining a planet and the Sun sweeps out equal areas
during equal intervals of time.
3. The square of a planet's orbital period is proportional to the cube of the semi-major of its orbit.
Johannes Kepler was a German astronomer, mathematician, and astrologer
Born: 27 December 1571, Weil der Stadt, Germany
Died: 15 November 1630
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.
<span>37.8 seconds
First, determine the speed difference between the car and truck.
95 km/h - 75 km/h = 20 km/h
Convert that speed into m/s to make a more convenient unit of measure.
20 km/h * 1000 m/km / 3600 s/h = 5.556 m/s
Now it's simply a matter of dividing the distance between the two vehicles and their relative speed.
210 m / 5.556 m/s = 37.8 s
So it will take 37.8 seconds for the car to catch the truck that's 210 meters in front of the car.</span>