Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:

Electric field, an electric property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by the value of E, called electric field strength or electric field intensity or simply the electric field.
Magnetic field are a region around a magnetic material or a moving electric charge within which the force of magnetism acts. Magnetic fields are produced by moving electric charges. Everything is made up of atoms, and each atom has a nucleus made of neutrons and protons with electrons that orbit around the nucleus. Since the orbiting electrons are tiny moving charges, a small magnetic field is created around each atom.
Similarities between magnetic fields and electric fields: Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like pole repel unlike poles attract. Electric field points in the direction of the force experienced by a positive charge.
Answer:
1.48kg
Explanation:
Here,
potential energy (P.E) = 29j
height (h) = 2m
acceleration due to gravity(g) =

mass(m) = ?
we know,
P.E = mgh
or, 29 = m×9.8×2
or, 29/19.6 = m
or,m = 1.48kg
True.
A zero on the Kelvin temperature scale is also know as Absolute Zero because that is when the atom(s) have literally no kinetic energy.
Answer: See the explanation below.
Explanation: For this assignment, I chose to display how eclipses are created.
My model was made utilizing a 3D displaying device program for all intents and purposes. The items utilized are three models I made for this presentation, Earth, the moon, and the sun. These three models will be utilized for the showcase.
The light that shines from the sun would create a shadow on the moon. The moon would then catch the light that should've arrived on Earth, making the shadow we call an eclipse. Earth gets a shadow of the moon and the remainder of Earth is lit up from the rest of the light, making an eclipse.
The individual I demonstrated my project to was [<em>Someone you know</em>], [<em>Pronoun</em>] said it precisely took after the occasion of an eclipse. The light from the sun being shined on to the moon rather than the Earth, creating the shadow we call an eclipse.