Aerobic dance<span> has its foundation in </span>dance<span>-inspired movements. It is a cardiovascular workout set to music in a group </span>exercise<span> setting. You do not have to memorize </span>dance<span> moves, as the classes are taught by instructors who verbally tell and visually show the </span>choreography<span>.</span>
Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
29.213 cm3
First, calculate the mass of the water used. You do this by subtracting the original mass of the flask from the combined mass of the water and flask, giving:60.735 g - 31.601 g = 29.134 g
So we now know we have 29.134 g of water. To calculate the volume of the flask, simply divide by the density of the water, giving:29.134 g / (0.9973 g/cm3) = 29.213 cm3
I'm assuming the question is what is the robin's speed relative to to the ground...
Create an equation that describes its relative motion.
rVg = rVa + aVg
Substitute values.
rVg = 12 m/s [N] + 6.8 m/s [E]
Use vector addition.
| rVg | = √ | rVa |² + | aVg |²
| rVg | = √ 144 m²/s² + 46.24 m²/s²
| rVg | = √ 19<u>0</u>.24 m²/s²
| rVg | = 1<u>3</u>.78 m/s
Find direction.
tanФ = aVg / rVa
tanФ = 6.8 m/s / 12 m/s
Ф = 29°
Therefore, the velocity of the robin relative to the ground is 14 m/s [N29°E]
Answer:
nothing will happen the cart will be broken or as it is