The atom in an excited state has more energy and is less stable than the atom in the ground state.
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
The answer is C)The force of gravity from Earth acting on the spacecraft decreased because the distance from Earth increased.
Explanation:
Gravity, a force, is dependent on the mass of the object exerting the gravity and the distance of an outside object from that object. The larger the object, the more gravity it will exert on an outside object. This force decreases as you move away from the object, but it will always still exist and never be equal to 0.
Answer:
the rocks have the same amount of thermal energy
Answer:
The new force becomes 4 times the initial force.
Explanation:
The force of attraction or repulsion is given by the relation as follows :

Where
d is the distance between the interacting charges
F is inversely proportional to the distance between charges.
If the distance is halved, d'=(d/2), new force is given by :

So, the new force becomes 4 times the initial force.