<span>Active transport runs counter to facilitated diffusion. In active transport, molecules move against the concentration gradients, running from areas of lower concentration to areas of higher concentration. This is where energy is used.</span>
A displacement reaction will occur from the system given above. The chlorine molecules will displace the bromide ions in the solution of sodium bromide. The reaction will yield to sodium chloride and bromine. The reaction will be:
2NaBr + Cl2 = 2NaCl + Br2
Answer:
12
Explanation:
You will need a chemical equation with masses and molar masses, so let’s gather all the information in one place.
: 258.21 18.02
KAl(SO₄)₂·xH₂O ⟶ KAl(SO₄)₂ + xH₂O
Mass/g: 4.74 2.16
Step 1. Calculate the mass of the KAl(SO₄)₂.
Mass = 4.74 g – 2.16 g = 2.58 g.
Step 2. Calculate the moles of each product.
Step 3. Calculate the molar ratio of the two products.
1 mol of KAl(SO₄)₂ combines with 12 mol H₂O, so x = 12.
epicene Anika Hunger Games a Hunger Games Hunger Games Hunger Games Hunger Games for no Mommy get on with the quizzy gay gay gay
Answer:
26.25 mL
Explanation:
This is a dilution problem. First, let us calculate the volume of final solution needed:
The dog weighs 50 pounds and the sedative is administered at 0/7 ml per pound. Hence:
50 x 0.7 = 35 mL
A total volume of 35 mL, 2.5% solution of the sedative will be needed.
But 10% solution is available. There needs to be a dilution with saline water, but what volume of the 10% solution would be diluted?
initial volume = ?
final volume = 35 mL
initial concentration = 10%
final concentration = 2.5%
Using dilution equation:
initial concentration x initial volume = final concentration x final volume
initial volume =
= 2.5 x 35/10 = 8.75 mL
Hence, 8.75 mL of the 10% pre-mixed sedative will be required.
But 35 mL is needed? The 8.75 mL is marked up to 35 mL with saline water.
35 - 8.75 = 26.25 mL
<em>Therefore, 26.25 mL of saline water will be added to 8.75 mL of the 10% pre-mixed sedative to give 2.5%, 35 mL needed for the dog.</em>