Answer:
P₂ = 300 atm
Explanation:
Given that,
Initial volume, V₁ = 600 L
Initial pressure, P₁ = 400 atm
We need to find the pressure if the volume is 800 L.
We know that the relation between pressure and volume is given by :

So, the new pressure is equal to 300 atm.
Answer:
0
Explanation:
A neutral atom will have a charge of zero.
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.