1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
14

For each of the motions described below, determine the algebraic sign (+, -, or 0) of the velocity and acceleration of the objec

t at the time specified. For all of the motions, the positive y axis is upward.
Part A
An elevator is moving downward when someone presses the emergency stop button. The elevator comes to rest a short time later. Give the signs for the velocity and the acceleration of the elevator after the button has been pressed but before the elevator has stopped.
Enter the correct sign for the elevator's velocity and the correct sign for the elevator's acceleration, separated by a comma. For example, if you think that the velocity is positive and the acceleration is negative, then you would enter +,- . If you think that both are zero, then you would enter 0,0 .


Part B
A child throws a baseball directly upward. What are the signs of the velocity and acceleration of the ball immediately after the ball leaves the child's hand?
Enter the correct sign for the baseball's velocity and the correct sign for the baseball's acceleration, separated by a comma. For example, if you think that the velocity is positive and the acceleration is negative, then you would enter +,- . If you think that both are zero, then you would enter 0,0 .


Part C
A child throws a baseball directly upward. What are the signs of the velocity and acceleration of the ball at the very top of the ball's motion (i.e., the point of maximum height)?
Enter the correct sign for the baseball's velocity and the correct sign for the baseball's acceleration, separated by a comma. For example, if you think that the velocity is positive and the acceleration is negative, then you would enter +,- . If you think that both are zero, then you would enter 0,0 .
Physics
1 answer:
evablogger [386]3 years ago
7 0

Part A: -,+

The elevator is moving downward, this is what determines the direction of the velocity, as it will follow the direction of the movement. As we are told that the positive direction is upward, then the velocity has negative direction. Also, after the button is pressed, the elevator starts to stop, in other words, its velocity starts to decreased. This means that the acceleration has an opposite direction to the velocity, therefore, its sign is +.

Part B: +, -

The ball is moving upward, and as said before, this is what determines the direction of the velocity, as it will follow the direction of the movement. Then, velocity has a + sign.

Also, after the ball is thrown, there is no other force other than gravity, which will oppose to the movement of the ball, trying to make it come back to the ground. This means that the acceleration has an opposite direction to the velocity, in other words, it's directed downward, therefore, its sign is -.

Part C: 0, -

The acceleration of the ball since it was thrown until it fell to the ground will always be the gravity, which will always go downward (-).

After being thrown, the ball's velocity will start to decrease because of gravity. When its velocity has turned to 0, the ball will have reached maximum height . At this point it will start to fall again, accelerated by gravity. But at the very top, the velocity of the ball is 0.

You might be interested in
A diffraction grating, ruled with 300 lines per mm, is illuminated with a white light source at normal incidence.
Vera_Pavlovna [14]

the expression for diffraction grating allows to find the results for the questions for the angular separation are:

i) The third order is Δθ = 0.203 rad.

ii) The first order with water is Δθ = 0.046 rad.

The diffraction grating is a system formed by a large number of equally spaced lines whose diffraction is given by the expression.

          d sin θ = m λ

Where d is the distance between two lines, θ is the angle of diffraction, the order of diffraction and λ is the wavelength.

i) Let's start by looking for the separation between two lines

Let's use a rule of direct proportions. If there are 300 lines in 1 mm, what distance is there between two lines.

         d = 1 lines (1 mm / 300 lines) = 3,333 10⁻³ mm

         d = 3.333 10⁻⁶ m

Let's find the angle of diffraction for the third order (m = 3) for each wavelength.

λ₁ = 400 nm = 400 10⁻⁹ m

         sin θ₁ = \frac{m \ \lambda }{d}m λ/ d

         sin θ₁ = \frac{3 \ 400 \ 10^{-9} }{3.333 \ 10^{-6} }  

         θ₁ = sin⁻¹ 0.3600

         θ₁ = 0.368 rad

λ₂ = 600 nm = 600 10⁻⁹ m

         sin θ₂ = \frac{3 \ 600 \ 10^{-9} }{3.333 \ 10^{-6} }  

         θ₂ = sin⁻¹ 0.5401

         θ₂ = 0.571 rad

The angular separation is

         Δθ = θ₂ - θ₁

         Δθ = 0.571 - 0.368

         Δθ = 0.203 rad

ii) In this case, the separation between the network and the observation screen is filled with water.

When the rays leave the network they undergo a refraction process, for which they must comply with the relationship.

           n_i \ sin \theta_1 = n_r \ sin \theta_r

The incident side is in the air, therefore its refractive index is n_i = 1 and when it passes into the water with refractive index n_r = 1.33.

Let's start looking for the incident angles for the first order of diffraction.

      m = 1

λ₁ = 400 nm

         θ₁ = sin⁻¹  \frac{1 \ 400 \ 10^{-9}}{3.33 \ 10^{-6}}

         θ₁ = 0.120 rad

λ₂ = 600 nm

        θ₂ = sin⁻¹¹ \frac{1 \ 600 \ 10^{-9} }{3.33 \ 10^{-6}}

        θ₂ = 0.181 rad

we use the equation of refraction.

         \theta_r  = sin⁻¹ (\frac{n_i}{n_r} \ sin \ \theta_i )

λ₁ = 400 nm  

       θ₁ = sin¹ (\frac{1 sin 0.120}{1.33}

       θ₁ = 0.090 rad

λ₂ = 600 nm

        θ₂ =sin⁻¹  \frac{1 sin 0.181}{1.33}

        θ₂ = 0.1358 rad

The angular separation is

          Δθ = 0.1358 - 0.090

          Δθ = 0.046 rad.

In conclusion using the relation for the diffraction grating we can find the results for the questions about angular separation are:

       i) The third order is Δθ = 0.203 rad.

      ii) The first order with water is Δθ = 0.046 rad.

Learn more here: brainly.com/question/473160

6 0
2 years ago
What is latent heat? A. energy released or absorbed to change the kinetic energy of a substance B. energy released or absorbed t
kkurt [141]

the heat required to convert a solid into a liquid or vapor, or a liquid into a vapor, without change of temperature. hope this helps

6 0
3 years ago
Read 2 more answers
A satellite dish is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are
RSB [31]

Answer: 6.125 ft

Explanation:

If this dish has the form of a concave upward parabola and its vertex p is at the origin, its corresponding equation is:

x^{2}=4py

Where:

x is the radius, which can be found by dividing the diameter d=14 ft by half. Hence x=\frac{d}{2}=\frac{14 ft}{2}=7 ft

y=2 ft is the depth

p is the vertex of the parabola, where its base is

Finding p:

p=\frac{x^{2}}{4y}

p=\frac{(7 ft)^{2}}{4(2 ft)}

Finally:

p=6.125 ft This is where the the receiver should be placed

3 0
3 years ago
Buildings are more dense than the surrounding air. This means that they have more _____ per volume than the air and will stay on
Zinaida [17]

Answer:

<em>mass</em>

<em></em>

Explanation:

Density is the measure of how much mass of a substance is squeezed into a given volume of that substance. <em>It is the mass per unit volume</em>, and substances with lesser density will float in materials with denser density. Buildings are generally more obviously denser that air, if not we'll see then float upwards into the atmosphere, but that is not the case. Different liquids too can separate and form layers on one another due to their differences in volume.

7 0
3 years ago
Under which condition would time periods of daylight and darkness be equal everywhere on Earth all year? A. if Earth revolved ar
Marizza181 [45]
The correct answer is
<span>B. if Earth rotated on an axis that was not tilted with respect to Earth's orbit 

In fact, the fact that Earth's axis is tilted is the reason why the durations of day and night are different in every part of the Earth. If the axis was not tilted, we would have exactly 12 hours of day and night in every point of the Earth, for the whole year.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. How much wor
    12·1 answer
  • Describe the motion of a skydiver from the time he jumps to the time he lands safely on the ground
    9·1 answer
  • A 10 gram ball is rolling at 3 m/s. The ball has __________ energy. Calculate it. A 10 gram ball is held 2 meters from the groun
    15·1 answer
  • A football player carrying the ball runs straight ahead at the line of scrimmage and directly into a wall of defensive linemen.
    13·1 answer
  • What order shows decreasing wavelength
    7·1 answer
  • What is the momentum of a 200 kg car traveling 30 m/s to the right?
    9·1 answer
  • Calculate the total resistance in a series circuit made up of resistances of 3Ω, 4Ω, and 5Ω.
    6·1 answer
  • The space shuttle orbits 340km above the surface of the earth.What is the gravitational force on a 9.0kg sphere inside the space
    14·1 answer
  • A .2.-kg soccer ball is rolling at 6.0 m/s toward a player. The player kicks the ball back and gives it a velocity of 14 m/s in
    5·1 answer
  • In a game of Tug-of-War,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!