The maximum speed of the donkey is 10.72m/s
The question is based on the principle of motion in one dimension and hence formulas of motion in one dimension can be applied.
It is given that donkey attains an acceleration of 1.6 m/s^2
The time taken to accelerate to given speed is 6.7 seconds
We use the formula v=u + at to find the fastest speed
v is the final or maximum speed
u is the initial speed which in this case is 0 as the donkey is at rest
a is the acceleration of the donkey
t is the time taken in seconds
v = u + at
v= 0 + 1.6 x 6.7
= 10.72 m/s
Hence the donkey obtains the speed of 10.72 m/s
For further reference:
brainly.com/question/24478168?referrer=searchResults
#SPJ9
Answer:
"Longitudinal wave" is the appropriate answer.
Explanation:
- Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
- A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
Answer:
Convection currents are the result of different heating. Lighter material (warm) rises while heavier (cold) material sinks. This movement of the materials is what causes convection currents! (BTW, it happens in water, in the atmosphere, and in the mantle of Earth!
Explanation:
I hope this helps a little! :)
A circle has a revolution of 360°. Since there are 12 hour markings, each hour interval has an angle of 30°. In radians, that would be equal to π/6 radians. So, in every 1 hour that passes, it covers π/6 of an angle. So, the angular velocity denoted as ω is π/6 ÷ 1 hour = π/6 rad/h. We can compute the average linear velocity, v, from the relationship:
v = rω, where r is the radius of the circle which is the length of the hour hand
v = (2.4 cm)(π/6 rad/h)
v = 1.257 cm/hour
Therefore, the average velocity is 1.257 cm per hour.
For the average acceleration, it is equal to zero. The hands of the clock move at a constant velocity. Since acceleration is the change of velocity per unit time, there is no change of velocity because it's constant. That's why it is zero.
We use v=IR and assuming the resistance doesn’t change we can also say that the voltage and current (I) are directly proportional which means the voltage also decreases by 1/2