1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
11

Three beads are placed along a thin rod. The first bead, of mass m1 = 23 g, is placed a distance d1 = 1.1 cm from the left end o

f the rod. The second bead, of mass m2 = 15 g, is placed a distance d2 = 1.9 cm to the right of the first bead. The third bead, of mass m3 = 58 g, is placed a distance d3 = 3.2 cm to the right of the second bead. Assume an x-axis that points to the right.
a. Write a symbolic equation for the location of the center of mass of the three beads relative to the left end of the rod, in terms of the variables given in the problem statement.
b. Find the center of mass, in centimeters, relative to the left end of the rod.
c. Write a symbolic equation for the location of the center of mass of the three beads relative to the center of bead, in terms of the variables given in the problem statement.
d. Find the center of mass, in centimeters, relative to the middle bead.
Physics
2 answers:
slamgirl [31]3 years ago
7 0

Answer:

Part (a)

x_{cm}=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3}  ) }{m_{1}+m_{2}+m_{3} }

Part (b)

x = 4.48 cm

Part (c)

x_{cm}=\frac{-m_{1}d_{2}+m_{3}d_{3} }{m_{1}+m_{2}+m_{3} }

d) x = 1.48 cm

Explanation:

Given that

First bead

mass , m₁ = 23g

d₁ = 1.1 cm

Second bead

mass, m₂ = 15 g

d₂ = 1.9 cm

Third bead

mass, m₃ = 58 g

d₃ = 3.2 cm

Part (a)

equation for the location of the center of mass of the three beads is

x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}

x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}\\\\x_{cm}=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3}  ) }{m_{1}+m_{2}+m_{3} }

Part (b)

the center of mass is

x_{cm}=\frac{23g*1.1cm+15g*(1.1cm+1.9cm)+58g(1.1cm+1.9cm+3.2cm) }{23g+15g+58g } \\\\x_{cm}= \frac{25.3+45+359.6}{96} \\\\x_{cm}=\frac{429.9}{96}\\\\x_{cm}=4.48cm

Part (c)

the location of the center of mass of the three beads is

x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}

x_{cm}=\frac{m_{1}-d_{2}+m_{2}(0)+m_{3}d_{3} }{m_{1}+m_{2} +m_{3}}\\\\x_{cm}=\frac{-m_{1}d_{2}+m_{3}d_{3} }{m_{1}+m_{2} +m_{3}}

Part (d)

the center of mass is

x_{cm}=\frac{-(23g)(1.9cm)+(58g)(3.2cm) }{23g+15g+58g} \\\\ x_{cm} = \frac{-43.7+185.6}{96} \\\\ x_{cm}=\frac{141.9}{96} \\\\ x_{cm}=1.48cm

Mila [183]3 years ago
6 0

Answer:

a) x=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3}  ) }{m_{1}+m_{2}+m_{3} }

b) x = 4.47 cm

c) x=\frac{m_{1}d_{2}+m_{2}(0)+m_{3}d_{3} }{m_{1}+m_{2}+m_{3} }

d) x = 1.48 cm

Explanation:

a) The center of mass is equal to:

x=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}

Where m is the mass of beads and x is the distances, if x₁ = d₁, x₂ = d₂ and x₃ = d₃

x=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3}  ) }{m_{1}+m_{2}+m_{3} }

b) If

m₁ = 23g

m₂ = 15 g

m₃ = 58 g

d₁ = 1.1 cm

d₂ = 1.9 cm

d₃ = 3.2 cm

x=\frac{23*1.1+15*(1.1+1.9)+58(1.1+1.9+3.2) }{23+15+58 } =4.47cm

c) The center of the mass of the beads realtive to the center of bead is:

x=\frac{m_{1}d_{2}+m_{2}(0)+m_{3}d_{3} }{m_{1}+m_{2}+m_{3} }

d) x=\frac{23*(-1.9)+(15*0)+(58*3.2) }{23+15+58 } =1.48cm

You might be interested in
The truck in which
sertanlavr [38]

Answer:

m = 4

Explanation:

We have,

You apply a force of  600 N to the branch  which acts as a lever. It means it is input force, IF = 600 N

The rear of the truck  weighs 2,400 N. It means it is output force, OF = 2400 N

The ratio of output force to the input force is equal to the mechanical advantage of the lever arm. It is given by :

m=\dfrac{2400}{600}\\\\m=4

So, the mechanical  gain of the lever arm is 4.

8 0
2 years ago
Bicycle in its writers have combined a mass of 80 kg in a speed of 6.0 meters per Second what is the magnitude of the average fo
erik [133]

Answer:

F = 120 N

Explanation:

Force x distance = energy

The bike has energy 1/2 . 80 . 6^2   = 1440 J

You are looking at an example of not reading the question properly.

Impulse = Force . time  = change in momentum

F . 4  = 80 .6

F = 120 N

7 0
3 years ago
(5, 3) and (7, 3) are two coordinate points for a single object on a position-versus-time graph. Assume time is measured in seco
Maru [420]
Since the y axis stayed consistent, we can assume it did not move at all.
(So your answer would be A)
6 0
3 years ago
Read 2 more answers
A photon of wavelength 7.33 pm scatters at an angle of 157° from an initially stationary, unbound electron. What is the de Brogl
Ann [662]

Answer:

4.63 p.m.

Explanation:

The problem given here can be solved by the Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda  is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta  is the angle of scattering.

Given that, the scattering angle is, \theta=157^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8}  } (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42(1-cos157^\circ ) p.m.

Therfore,

\lambda^{'}-\lambda=4.64 p.m.

Here, the photon's incident wavelength is \lamda=7.33pm

So,

\lambda^{'}=7.33+4.64=11.97 p.m

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

here, \vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therfore,

\lambda_{e}=\frac{7.33\times 11.97}{\sqrt{7.33^{2}+11.97^{2}-2\times 7.33\times 11.97\times cos157^\circ }} p.m.\\\lambda_{e}=\frac{87.7401}{18.935} = 4.63 p.m.

This is the de Broglie wavelength of the electron after scattering.

8 0
3 years ago
6- A metal block measures 10 cm x 2 cm x 2 cm. what is its volume? how many blocks each
zalisa [80]
You need 5 blocks of the smaller object to contain the same amount of volume of the bigger object

3 0
3 years ago
Other questions:
  • How do you producers consumers and decomposers all live in a cycle
    9·1 answer
  • Why is it important to consider experimental error in all the empirical results presented?
    8·1 answer
  • What are the main components of the Milky Way?
    11·1 answer
  • If an object has a mass of 26 g on earth, would its mass be less than 26g on the moon?
    8·2 answers
  • A parallel-plate vacuum capacitor has 8.60 J of energy stored in it. The separation between the plates is 3.80 mm . If the separ
    5·1 answer
  • Two blocks, joined by a string, have masses of 6.0 and 9.0 kg. They rest on a frictionless, horizontal surface. A second string,
    14·1 answer
  • (HELP ASAP) A student’s cell phone battery is almost dead, and she plugs it into an electrical outlet to charge. As it charges,
    5·1 answer
  • You fill a car with gasoline. The car now has... ( what energy)
    9·1 answer
  • ______ can occur when water-saturated soil turns from a solid to a liquid as a result of an earthquake.
    5·1 answer
  • What would cause a beam of light to increase in wavelength and bend away from the normal? A) Passing from a round glass into a s
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!