In mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
<h3>How to explain the information?</h3>
It should be noted that waves simply means the dynamic disturbance of a quantity.
It should be noted that in mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
Learn more about waves in:
brainly.com/question/15663649
#SPJ4
Answer:
That people are motivated by a series of five universal needs.
Explanation:
Answer:
B) -1m/s^2
Explanation:
Final speed = 0 m/s
Initial speed = 5m/s
Time taken for it to come to rest(0m/s) = 5
then use the formula;
[v = u + at],where v is the final speed..u is the initial speed..t is time taken for it to come to rest and a is the acceleration
; 0 = 5 + 5a
; -5 = 5a
;Acceleration = -1 m/s^2
Answer:
I₂ = 25.4 W
Explanation:
Polarization problems can be solved with the malus law
I = I₀ cos² θ
Let's apply this formula to find the intendant intensity (Gone)
Second and third polarizer, at an angle between them is
θ₂ = 68.0-22.2 = 45.8º
I = I₂ cos² θ₂
I₂ = I / cos₂ θ₂
I₂ = 75.5 / cos² 45.8
I₂ = 155.3 W
We repeat for First and second polarizer
I₂ = I₁ cos² θ₁
I₁ = I₂ / cos² θ₁
I₁ = 155.3 / cos² 22.2
I₁ = 181.2 W
Now we analyze the first polarizer with the incident light is not polarized only half of the light for the first polarized
I₁ = I₀ / 2
I₀ = 2 I₁
I₀ = 2 181.2
I₀ = 362.4 W
Now we remove the second polarizer the intensity that reaches the third polarizer is
I₁ = 181.2 W
The intensity at the exit is
I₂ = I₁ cos² θ₂
I₂ = 181.2 cos² 68.0
I₂ = 25.4 W