Answer:
s=800 m
Explanation:
Given that,
Acceleration of a runner, a = 4 m/s²
Time, t = 20 seconds
We need to find the distance covered by her. Initially, she was at rest. It means its initial velocity is equal to 0. So, using second equation of motion as follows :

Herre, u = 0

So, she will cover a distance of 800 m.
<span>141.6 million mi,and idk what u mean by how</span>
Taking the copper wire, he has to wind it around the nail made of iron. After which, he then connect both ends of the copper wire to the battery, so an electric charge travels through the wire. This is the basic electromagnet. Since a current is now flowing through the wire, a magnetic field is produced. Placing the electromagnet near the mixture of copper and iron, the magnet should attract the pieces of iron, as iron is more magnetic compared to copper. This is done over a period of time, so that only the copper pieces are left in the mixture.
Answer: I believe the answer is C. Higher Volume.
Explanation: I apologize if I am incorrect.
The direction of the magnetic force on the wire is west.
The magnetic force acting on the moving protons acts northward in the horizontal plane. If the thumb is up (current flows vertically up), the wrapped finger will be counterclockwise.
Therefore, the direction of the magnetic field is counterclockwise. Here, the magnetic field is pointing upwards (vertical magnetic field) and the electrons are moving east. Applying Fleming's left-hand rule here, we can see that the direction of force is along the south direction.
As the change in magnetic flux increases upwards, Lenz's law indicates that the induced magnetic field of the induced current must resist and the inside of the loop must be directed downwards. Using the right-hand rule, we can see that a clockwise current is induced.
Learn more about the magnetic fields here: brainly.com/question/7802337
#SPJ4