Answer:
10.93 rad/s
Explanation:
If we treat the student as a point mass, her moment of inertia at the rim is

So the system moment of inertia when she's at the rim is:

Similarly, we can calculate the system moment of inertia when she's at 0.456 m from the center

We can apply the law of angular momentum conservation to calculate the post angular speed when she's 0.456m from the center:


Answer:
B. The mass of Mars is less than the mass of Earth.
Explanation:
Mass of an object is the constant anywhere in the universe.
The weight of an object is equal to the gravitational force acting on it.
Weight is given by

where
G = Gravitational constant
M = Mass of Planet
R = Radius of planet
m = Mass of object
g = Acceleration due to gravity
So weight of an object depends on the acceleration due to gravity on that planet. The acceleration due to gravity depends on the mass and radius of the planet.
The weight of the object is less on Mars because mars has less mass compared to Earth.
Answer:
China, US, India, and Russia
B. their distances from the sun.
Explanation:
Absolute Magnitude:
Astronomers defines the absolute magnitude of a stars brightness in terms of how bright a star appears from a standard distance of 10 parsecs. Parsec is a unit of distance in astronomy. 10 parsecs is equal to 32.6 light years.
Apparent Magnitude:
Apparent magnitude of a star refers to how bright the star appears at its distance from the Earth.
If two stars have the same absolute magnitude but their apparent magnitude differs, the reason is that the distance of both the stars from the Earth varies. Hence their brightness differs when measured from Earth. The farther a star is from the Earth, the fainter its brightness.
Keywords: star, brightness, parsec, light years, apparent magnitude, absolute magnitude
Learn more about stars and absolute magnitude from:
brainly.com/question/13002384
brainly.com/question/1384449
#learnwithBrainly