Answer:
-75.35°
Explanation:
Let C be the sum of the two vectors A and B. Hence, we can write the following

but since the vector C is in the -y direction,
= 0 and
= —12 m.
Thus
![B_{x} =-A_{x} =-[-Acos(180-127)]=(8)*cos(53)\\B_{x} =4.81m](https://tex.z-dn.net/?f=B_%7Bx%7D%20%3D-A_%7Bx%7D%20%3D-%5B-Acos%28180-127%29%5D%3D%288%29%2Acos%2853%29%5C%5CB_%7Bx%7D%20%3D4.81m)
similarly, we can determine
by rearranging equation (1)

so the magnitude of B is

Finally, the direction of B can be calculated as follows
Ф=
hence the vector B makes an angle of 75.35 clockwise with + x axis
The electric potential energy of this system of charges will be +1.44 J. Option E is correct.
<h3>What is the electric potential energy ?</h3>
Electric potential energy stands for the energy that is required to displace a charge in against an electric field.
Given data;
q₁ = 4. 0 µc
q₂ = -8. 0 µc
D(distance between charges) = 0.2 m
The electric potential energy is found as;

The electric potential energy of this system of charges will be +1.44 J.
Hence,option E is correct.
To learn more about the electric potential energy refer:
brainly.com/question/12645463
#SPJ4
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Theres: the vacuole, nucleus, rough endoplamid reticulum, smooth endoplasmic reticulum, cell memebrane, cell wall, chloroplast, mitochondria, golgi apperatus, lysosomes, and ribosomes